We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
N-polar and Ga-polar GaN grown on c-plane sapphire by a metal-organic chemical vapor deposition (MOCVD) system were used to fabricate platinum deposited Schottky contacts for hydrogen sensing at room temperature. Wurtzite GaN is a polar material. Along the c-axis, there are N-face (N-polar) or Ga-face (Ga-polar) orientations on the GaN surface. The Ohmic contacts were formed by lift-off of e-beam deposited Ti (200 Å)/Al (1000 Å)/Ni (400 Å)/Au (1200 Å). The contacts were annealed at 850°C for 45 s under a flowing N2 ambient. Isolation was achieved with 2000 Å plasma enhanced chemical vapor deposited SiNx formed at 300°C. A 100 Å of Pt was deposited by e-beam evaporation to form Schottky contacts. After exposure to hydrogen, Ga-polar GaN Schottky showed 10% of current change, while the N-polar GaN Schottky contacts became fully Ohmic. The N-polar GaN Schottky diodes showed stronger and faster response to 4% hydrogen than that of Ga-polar GaN Schottky diodes. The abrupt current increase from N-polar GaN Schottky exposure to hydrogen was attributed to the high reactivity of the N-face surface termination. The surface termination dominates the sensitivity and response time of the hydrogen sensors made of GaN Schottky diodes. Current-voltage characteristics and the real-time detection of the sensor for hydrogen were investigated. These results demonstrate that the surface termination is crucial in the performance of hydrogen sensors made of GaN Schottky diodes.
GaAs based metamorphic and pseudomorphic high electron mobility transistors (HEMTs) under DC and thermal stress were studied. InAlAs/InGaAs MHEMTs grown on GaAs substrates were stressed at a drain voltage bias of 2.7V for 36 hours as well as thermally stressed at 250°C for 36 hours. Under both stress conditions, the drain current density decreased about 12.5%. The gate current, however, increased more after the thermal storage as opposed to DC bias. Reaction of the Ohmic contact with the underlying semiconductor was the main cause of degradation after thermal stressing. Transmission electron microscopy verified that gate sinking occurred in devices that underwent DC bias stressing. InGaAs pHEMTs that received a 1000 hour lifetime stress test from a commercial vendor showed similar degradation as virgin devices when stressed under DC bias for 24 hours. Virgin devices that were thermally stressed while undergoing DC bias showed minimal degradation up to 120°C, but exhibited catastrophic failure at 140°C.
AlGaN/GaN high electron mobility transistors (HEMTs) with a polarized Polyvinylidene difluoride (PVDF) film coated on the gate area exhibited significant changes in channel conductance upon exposure to different ambient pressures. The PVDF thin film was deposited on the gate region with an inkjet plotter. Next, the PDVF film was polarized with an electrode located 2 mm above the PVDF film at a bias voltage of 10 kV and 70 °C. Variations in ambient pressure induced changes in the charge in the polarized PVDF, leading to a change of surface charges on the gate region of the HEMT. Changes in the gate charge were amplified through the modulation of the drain current in the HEMT. By reversing the polarity of the polarized PVDF film, the drain current dependence on the pressure could be reversed. Our results indicate that HEMTs have potential for use as pressure sensors.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.