We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hand, foot, and mouth disease (HFMD) shows spatiotemporal heterogeneity in China. A spatiotemporal filtering model was constructed and applied to HFMD data to explore the underlying spatiotemporal structure of the disease and determine the impact of different spatiotemporal weight matrices on the results. HFMD cases and covariate data in East China were collected between 2009 and 2015. The different spatiotemporal weight matrices formed by Rook, K-nearest neighbour (KNN; K = 1), distance, and second-order spatial weight matrices (SO-SWM) with first-order temporal weight matrices in contemporaneous and lagged forms were decomposed, and spatiotemporal filtering model was constructed by selecting eigenvectors according to MC and the AIC. We used MI, standard deviation of the regression coefficients, and five indices (AIC, BIC, DIC, R2, and MSE) to compare the spatiotemporal filtering model with a Bayesian spatiotemporal model. The eigenvectors effectively removed spatial correlation in the model residuals (Moran’s I < 0.2, p > 0.05). The Bayesian spatiotemporal model’s Rook weight matrix outperformed others. The spatiotemporal filtering model with SO-SWM was superior, as shown by lower AIC (92,029.60), BIC (92,681.20), and MSE (418,022.7) values, and higher R2 (0.56) value. All spatiotemporal contemporaneous structures outperformed the lagged structures. Additionally, eigenvector maps from the Rook and SO-SWM closely resembled incidence patterns of HFMD.
This study investigates the extent to which a group of Australian preservice and early career secondary school music teachers of East Asian heritage are likely to teach aspects of their heritage music. It is positioned against a background of national multiculturalism and approaches to cultural inclusivity in Australian society, as well as the long-standing notion of ‘Asia literacy’ in Australian education and the national cross-curriculum priority (C-CP) of ‘Asia and Australia’s engagement with Asia’. The study’s findings indicate that the participants identified with their ancestral cultures to varying extents, generally had very limited knowledge of and experience with their heritage music and in general were reluctant to teach their heritage music. The authors suggest that the slow rate of progress towards culturally diversifying Australian music classrooms is related to complex matters and attitudes surrounding race in the country. The study proposes developing Cayari’s concept of ‘Asian spaces’ as a means of increasing the presence of East Asian music in Australian schools and of supporting teachers of East Asian heritage in the workplace. Finally, the authors emphasise that culturally diversifying the content of music classrooms can be undertaken by teachers of any cultural background.
This study aimed to assess the concordance between different anthropometric indexes in the Global Leaders Initiated Malnutrition Standards (GLIM) and the Geriatric Risk Index (GNRI) for evaluating muscle mass, while also exploring performance-based criteria for GLIM muscle content suitable for elderly patients with intermediate and advanced tumors. A total of 312 patients admitted to Shanghai Tenth People’s Hospital between September 2022 and June 2023 were retrospectively included. Nutritional assessments were conducted using the GLIM framework, employing grip strength, upper arm circumference, and calf circumference as criteria for muscle content evaluation. The diagnostic value of these tools was compared against the GNRI as a reference standard. Among the participants, 127 (40.71%) were diagnosed as malnourished by GNRI, while the GLIM assessments yielded 138 (44.23%), 128 (41.03%), and 162 (51.92%) malnutrition diagnoses based on grip strength, calf circumference, and upper arm circumference, respectively. Both GNRI and GLIM-grip strength were significantly associated with complications and length of hospital stays. Notably, using GNRI as a reference, GLIM-grip strength demonstrated good consistency in diagnosing malnutrition (K value = 0.692, P < 0.001), with calf circumference having the highest diagnostic value. In conclusion, grip strength is a practical and effective performance-based criterion within the GLIM standards and has the potential to enhance malnutrition diagnosis in elderly patients with advanced malignancies, highlighting its relevance in nutritional science.
Mediation analysis plays an important role in understanding causal processes in social and behavioral sciences. While path analysis with composite scores was criticized to yield biased parameter estimates when variables contain measurement errors, recent literature has pointed out that the population values of parameters of latent-variable models are determined by the subjectively assigned scales of the latent variables. Thus, conclusions in existing studies comparing structural equation modeling (SEM) and path analysis with weighted composites (PAWC) on the accuracy and precision of the estimates of the indirect effect in mediation analysis have little validity. Instead of comparing the size on estimates of the indirect effect between SEM and PAWC, this article compares parameter estimates by signal-to-noise ratio (SNR), which does not depend on the metrics of the latent variables once the anchors of the latent variables are determined. Results show that PAWC yields greater SNR than SEM in estimating and testing the indirect effect even when measurement errors exist. In particular, path analysis via factor scores almost always yields greater SNRs than SEM. Mediation analysis with equally weighted composites (EWCs) also more likely yields greater SNRs than SEM. Consequently, PAWC is statistically more efficient and more powerful than SEM in conducting mediation analysis in empirical research. The article also further studies conditions that cause SEM to have smaller SNRs, and results indicate that the advantage of PAWC becomes more obvious when there is a strong relationship between the predictor and the mediator, whereas the size of the prediction error in the mediator adversely affects the performance of the PAWC methodology. Results of a real-data example also support the conclusions.
This study conducts experimental investigations into wake-induced vibration (WIV) of a circular cylinder placed downstream of an oscillating cylinder. Surprisingly, it is observed that the previously identified WIV phenomenon, characterized by a sustained increase in amplitude at higher reduced velocities, does not occur when the upstream cylinder oscillates at large amplitudes. Instead, a different phenomenon, which we refer to as the ‘wake-captured vibration’, becomes dominant. The experiments reveal a negative correlation between the vortex-induced vibration amplitude response of the upstream cylinder and the WIV amplitude response of the downstream cylinder. Through a quasi-steady and linear instability analysis, the study demonstrates that the previously proposed wake-displacement mechanism may not be applicable for predicting the cylinder WIV response in the wake of an oscillating body. This is because the lift force gradients across the wake, measured through stationary cylinder experiments, decrease significantly when the upstream cylinder vibrates at higher amplitudes. Consequently, actively controlled vibration experiments are conducted to systematically map the hydrodynamic properties of the downstream cylinder vibrating in the wake of an oscillating cylinder. The findings align with observations from free-vibration experiments, and help to explain the amplitude and frequency response of WIV. Additionally, wake visualization through particle image velocimetry is conducted to provide further insights into the complex wake and vortex–body interactions.
High prevalence of long COVID symptoms has emerged as a significant public health concern. This study investigated the associations between three doses of COVID-19 vaccines and the presence of any and ≥3 types of long COVID symptoms among people with a history of SARS-CoV-2 infection in Hong Kong, China. This is a secondary analysis of a cross-sectional online survey among Hong Kong adult residents conducted between June and August 2022. This analysis was based on a sub-sample of 1,542 participants with confirmed SARS-CoV-2 infection during the fifth wave of COVID-19 outbreak in Hong Kong (December 2021 to April 2022). Among the participants, 40.9% and 16.1% self-reported having any and ≥3 types of long COVID symptoms, respectively. After adjusting for significant variables related to sociodemographic characteristics, health conditions and lifestyles, and SARS-CoV-2 infection, receiving at least three doses of COVID-19 vaccines was associated with lower odds of reporting any long COVID symptoms comparing to receiving two doses (adjusted odds ratio [AOR]: 0.69, 95% CI: 0.54, 0.87, P = .002). Three doses of inactivated and mRNA vaccines had similar protective effects against long COVID symptoms. It is important to strengthen the coverage of COVID-19 vaccination booster doses, even in the post-pandemic era.
Several novel anthropometric indices, including paediatric body adiposity index (BAIp) and triponderal mass index (TMI), have emerged as potential tools for estimating body fat in preschool children. However, their comparative validity and accuracy, particularly when compared with established indicators such as BMI, have not been thoroughly investigated. This cross-sectional study enrolled 2869 preschoolers aged 3–6 years in Wuhan, China. The non-parametric Bland–Altman analysis was employed to evaluate the agreement between BMI, BAIp and TMI with percentage of body fat (PBF), determined by bioelectrical impedance analysis (BIA), serving as the reference measure of adiposity. Additionally, receiver operating characteristic curve analysis was conducted to assess the effectiveness of BMI, BAIp and TMI in screening for obesity. BAIp demonstrated the least bias in estimating PBF, showing discrepancies of 3·64 % (95 % CI 3·40 %, 4·12 %) in boys and 3·95 % (95 % CI 3·79 %, 4·23 %) in girls. Conversely, BMI underestimated PBF by 3·89 % (95 % CI 3·70 %, 4·37 %) in boys and 4·81 % (95 % CI 4·59 %, 5·09 %) in girls, while TMI also underestimated PBF by 5·15 % (95 % CI 4·90 %, 5·52 %) in boys and 5·68 % (95 % CI 5·30 %, 5·91 %) in girls. BAIp exhibited the highest AUC values (AUC = 0·867–0·996) in boys, whereas in girls, there was no statistically significant difference between BMI (AUC = 0·936, 95 % CI 0·921, 0·948) and BAIp (AUC = 0·901, 95 % CI 0·883, 0·916) in girls (P = 0·054). In summary, when considering the identification of obesity, BAIp shows promise as a screening tool for both boys and girls.
In this paper, an unmanned bicycle (UB) with a reaction wheel is designed, and a second-order mathematical model with uncertainty is established. In order to achieve excellent balancing performance of the UB system, an adaptive controller is designed, which is composed of nominal feedback control, compensating control using extreme learning machine observer and reaching control via integral terminal sliding mode (ITSM) and barrier function (BF)-based adaptive law. Owing to the features of BF-based ITSM (BFITSM), not only any uncertainty or disturbance upper bound is not needed any longer but also the finite-time convergence of the closed-loop system can be ensured with a predefined error bound. Moreover, the BF-based control gain can be adaptively adjusted according to the update of the lumped uncertainty such that the overestimation is removed. The stability analysis of the closed-loop system is given according to Lyapunov theory. Comparable experimental results on an actual UB are carried out to validate the superior balancing performance of the proposed controller.
This paper systematically investigated the impact mechanisms of proton irradiation, atomic oxygen irradiation and space debris collision, both individually and in combination, on the laser damage threshold and damage evolution characteristics of HfO2/SiO2 triple-band high-reflection films and fused silica substrates using a simulated near-Earth space radiation experimental system. For the high-reflection film samples, the damage thresholds decreased by 15.38%, 13.12% and 46.80% after proton, atomic oxygen and simulated space debris (penetration) irradiation, respectively. The coupling irradiation of the first two factors resulted in a decrease of 26.93%, while the combined effect of all the three factors led to a reduction of 63.19%. Similarly, the fused silica substrates exhibited the same pattern of laser damage performance degradation. Notably, the study employed high-precision fixed-point in situ measurement techniques to track in detail the microstructural changes, surface roughness and optical-thermal absorption intensity before and after proton and atomic oxygen irradiation at the same location, thus providing a more accurate and comprehensive analysis of the damage mechanisms. In addition, simulations were conducted to quantitatively analyze the transmission trajectories and concentration distribution lines of protons and atomic oxygen incident at specific angles into the target material. The research findings contribute to elucidating the laser damage performance degradation mechanism of transmissive elements in near-Earth space environments and provide technical support for the development of high-damage-threshold optical components resistant to space radiation.
The epidemiological and burden characteristics of nutritional deficiencies (ND) have been evolving, and it is crucial to identify geographical disparities and emerging trends. This study aimed to analyse the global, regional and national trends in the burden of ND over the past 30 years. Data were obtained from the Global Burden of Disease (GBD) 2019 database for the period 1990–2019. The study examined the incidence rates and disability-adjusted life years (DALY) of ND at various levels. Globally, the incidence rate of ND decreased from 2226·2 per 100 000 in 2019 to 2096·3 per 100 000 in the same year, indicating a decline of 5·8 %. The average annual percentage change (AAPC) was −0·21 (–0·31, −0·11). Similarly, DALY, prevalence and mortality rates of ND exhibited significant declines (AAPC = −3·21 (–3·45, −2·96), AAPC = −0·53 (–0·55, −0·51) and AAPC = −4·97 (–5·75, −4·19), respectively). The incidence rate of ND varied based on age group, sex, cause and geographical area. Moreover, a negative association was observed between incidence and the sociodemographic index. At the regional level, the South Asia and sub-Saharan Africa regions had the highest incidence rates of ND. In conclusion, the global incidence rate of ND showed a mixed pattern, while the DALY rate consistently declined. Additionally, prevalence and mortality rates of ND decreased between 1990 and 2019.
China is still among the 30 high-burden tuberculosis (TB) countries in the world. Few studies have described the spatial epidemiological characteristics of pulmonary TB (PTB) in Jiangsu Province. The registered incidence data of PTB patients in 95 counties of Jiangsu Province from 2011 to 2021 were collected from the Tuberculosis Management Information System. Three-dimensional spatial trends, spatial autocorrelation, and spatial–temporal scan analysis were conducted to explore the spatial clustering pattern of PTB. From 2011 to 2021, a total of 347,495 newly diagnosed PTB cases were registered. The registered incidence rate of PTB decreased from 49.78/100,000 in 2011 to 26.49/100,000 in 2021, exhibiting a steady downward trend (χ2 = 414.22, P < 0.001). The average annual registered incidence rate of PTB was higher in the central and northern regions. Moran’s I indices of the registered incidence of PTB were all >0 (P< 0.05) except in 2016, indicating a positive spatial correlation overall. Local autocorrelation analysis showed that ‘high–high’ clusters were mainly distributed in northern Jiangsu, and ‘low–low’ clusters were mainly concentrated in southern Jiangsu. The results of this study assist in identifying settings and locations of high TB risk and inform policy-making for PTB control and prevention.
We aimed to examine the association between dietary Se intake and CVD risk in Chinese adults.
Design:
This prospective cohort study included adults above 20 years old in the China Health and Nutrition Survey (CHNS), and they were followed up from 1997 to 2015 (n 16 030). Dietary data were retrieved from CHNS, and a 3-d, 24-h recall of food intake was used to assess the cumulative average intake of dietary Se, which was divided into quartiles. The Cox proportional hazards model was adopted to analyse the association between dietary Se intake and incident CVD risk.
A total of 663 respondents developed CVD after being followed up for a mean of 9·9 years (median 9 years). The incidence of CVD was 4·3, 3·7, 4·6 and 4·0 per 1000 person-years across the quartiles of cumulative Se intake. After adjusting all potential factors, no significant associations were found between cumulative Se intake and CVD risk. No interactions were found between Se intake and income, urbanisation, sex, region, weight, hypertension and CVD risk.
Conclusion:
We found no association between dietary Se and CVD.
Lipase is an industrial enzyme, the catalytic efficiency of which is restricted by various environmental factors. To improve this efficiency, immobilization technology has been utilized in the past to improve the stability of lipase in harsh conditions. Immobilization technology can be divided into physical methods and chemical methods. Some unsolved problems remain in current immobilization technology. The interaction between enzyme and immobilization support is weak and reversible during physical adsorption, resulting in poor stability of the immobilized enzyme and the contamination of substrate solution by leached enzymes. In chemical methods, enzyme-active sites might be inactivated due to the chemical reactions between enzyme molecules and support, resulting in a decrease in the enzymes’ catalytic activity (Liu et al., 2018a). The objective of the current study was to construct a nanostructured lipase via Mg-amino-clay as a carrier and improve the catalytic activity and stability of lipase by immobilization. Lipase produced by Aspergillus oryzae was immobilized on aminopropyl functionalized magnesium phyllosilicate (a 2:1 trioctahedral talc-like silicate Mg-amino-clay) via a 1-(3-Dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride (EDC) coupling agent. The physical and chemical properties of the Mg-amino-clay and Mg-amino-clay-based nanostructured biocatalyst (Mg-clay-lipase) were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Optimal immobilization conditions were determined by taking into account the following variables: amount of initial lipase, EDC concentration, and reaction time. The results revealed that the optimum temperature, pH, and thermal stability of Mg-clay-lipase were greater than equivalent values for free lipase under optimal conditions (described below – Process for Immobilization of Lipase on Mg-amino-clay). The Michaelis-Menten constant (Km) values were 5.25 mM and 7.42 mM while the maximum reaction rates (vmax) were 30.58 mM/(L·min) and 55.87 mM/(L·min) for free lipase and Mg-clay-lipase, respectively. The present study provided a new nanostructured biocatalyst and demonstrated that the enzyme activity and stability of Mg-clay-lipase were superior to those of free lipase due to the mechanism of 'interface activation'.
The clay mineralogy of the Zhada sediments was investigated, using X-ray diffraction and scanning electron microscopy, to obtain a better understanding of climatic change and uplift of the Himalayas in the Zhada region of Tibet. The sediments of Zhada basin in the late Miocene to Pliocene consist of lacustrine and fluvial deposits >800 m thick and can be subdivided into five clay assemblage zones based on their clay-mineral composition. The upward zonation is as follows: (1) smectite-kaolinite; (2) illite-chlorite; (3) chlorite-illite-kaolinite; (4) illite-chlorite; and (5) smectite, illite, and kaolinite. The ratio of chlorite + illite to kaolinite + smectite (Ch+I/K+S) and the Kübler index indicate a warm and humid climate from 9.5 to 8.4 Ma, a cold and dry climate from 8.4 to 7.2 Ma, a warm and seasonal arid climate from 7.2 to 4.5 Ma, a cool and humid climate from 4.5 to 3.6 Ma, and a warm and seasonally humid climate from 3.6 to 3.0 Ma. Intense fluctuations in the Kübler index and in the quantities of evaporite minerals dolomite, aragonite, and gypsum, during the period 7.2–4.5 Ma suggest strong climatic fluctuations between humid and seasonally humid conditions in the Zhada basin. Rapid uplift around the Zhada basin occurred at 8.4 and 3.6 Ma, with sharp subsidence at 7.2 and 4.5 Ma. Evolution of the climate at Zhada showed a different model from that of global climate change, and tectonics-led climate change was the major contributor to climate evolution in the area.
Increasing evidence shows that maternal hyperglycemia inhibits cardiomyocyte (CM) proliferation and promotes cell apoptosis during fetal heart development, which leads to cardiac dysplasia. Accumulating evidence suggests that the overexpression of miR-21 in CMs has a protective role in cardiac function. Therefore, we investigated whether miR-21 can rescue CM injury caused by high glucose. First, we performed biological function analysis of miR-21-5p overexpression in H9c2 cells treated with high glucose. We found that the proliferation of H9c2 cells treated with high glucose decreased significantly and was rescued after overexpression of miR-21-5p. CCK-8 and EdU incorporation assays were performed to assess cell proliferation. The cell proliferation of the miR-21-5p mimic transfection group was improved compared with that of the NC mimic group (*p < 0.05, miR-21-5p mimics vs. NC mimics) when the proliferation of H9c2 cells was reduced by high glucose (****p < 0.0001, high glucose (HG) vs. normal glucose (NG)). Then, we verified the targeted and negative regulation of miR-21-5p on Rhob using a dual-luciferase activity assay and RT-qPCR, respectively. We further demonstrated that miR-21-5p regulates Rhob to rescue the inhibition of CM proliferation induced by high glucose. The CCK-8 results showed that the cell proliferation of the siRNA-Rhob group was higher than that of the NC mimic group (***p < 0.001) and that of the cotransfection group with Up-Rhob plasmids and miR-21-5p mimics was lower than that of the miR-21-5p mimic group (*p < 0.05). Conclusion: Overexpression of miR-21-5p rescues the inhibition of high glucose-induced CM proliferation through regulation of Rhob.
In this paper, we design and fabricate dual-tunable waveguides in a two-dimensional periodic plate with threaded holes. Dual tunability is realized by using rods held with nuts as well as assembly prestress of the nuts. A straight waveguide, a bent waveguide, and a wave splitter are designed by changing the distribution of rods and nuts in different circuits. The experimental and numerical results show that the frequencies of guided waves can be tuned by the assembly prestress. By increasing the amount of prestress, the frequency range of the passing band can be shifted upward. Confinements, guiding, and splitting of Lamb waves are clearly observed in both experimental measurements and numerical simulations. This work is essential for the practical design of reconfigurable phononic devices.
Aging plays a crucial role in the mechanisms of the impacts of genetic and environmental factors on blood pressure and serum lipids. However, to our knowledge, how the influence of genetic and environmental factors on the correlation between blood pressure and serum lipids changes with age remains to be determined. In this study, data from the Chinese National Twin Registry (CNTR) were used. Resting blood pressure, including systolic and diastolic blood pressure (SBP and DBP), and fasting serum lipids, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TGs) were measured in 2378 participants (1189 twin pairs). Univariate and bivariate structural equation models examined the genetic and environmental influences on blood pressure and serum lipids among three age groups. All phenotypes showed moderate to high heritability (0.37–0.59) and moderate unique environmental variance (0.30–0.44). The heritability of all phenotypes showed a decreasing trend with age. Among all phenotypes, SBP and DBP showed a significant monotonic decreasing trend. For phenotype-phenotype pairs, the phenotypic correlation (Rph) of each pair ranged from −0.04 to 0.23, and the additive genetic correlation (Ra) ranged from 0.00 to 0.36. For TC&SBP, TC&DBP, TG&SBP and TGs&DBP, both the Rph and Ra declined with age, and the Ra difference between the young group and the older adult group is statistically significant (p < .05). The unique environmental correlation (Re) of each pair did not follow any pattern with age and remained relatively stable with age. In summary, we observed that the heritability of blood pressure was affected by age. Moreover, blood pressure and serum lipids shared common genetic backgrounds, and age had an impact on the phenotypic correlation and genetic correlations.
For the large redundant manipulator, due to its long working distance and large mass, the number of links (i.e., manipulator’s arms) that can be driven to move simultaneously is limited. Otherwise, the control accuracy and motion stability of the manipulator will deteriorate. Focusing on that, a weighted Newton iteration (WNI) algorithm for trajectory planning of the manipulator is firstly proposed, where the motion of the manipulator joints is controlled by a weight matrix, which is constant and related to each link’s energy consumption. To dynamically adjust the weight matrix according to kinematic constraints and acquire better energy efficiency, an adaptive WNI (AWNI) algorithm is further proposed. In AWNI, the weight matrix is adjusted in real-time during the planning process, with considerations of the kinematic constraints and the energy consumption of the manipulator. The switch of the links between the working state and the non-working state is made through the weight matrix to achieve flexible control of the manipulator motion. Two evaluation functions are established to validate the effectiveness of AWNI in energy saving and motion stability control. Taking a 6 degrees of freedom (DOF) manipulator as an example, simulation experiments on trajectory planning are carried out and the results show the effectiveness of the proposed AWNI algorithm.