We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Diagnostic criteria for major depressive disorder allow for heterogeneous symptom profiles but genetic analysis of major depressive symptoms has the potential to identify clinical and etiological subtypes. There are several challenges to integrating symptom data from genetically informative cohorts, such as sample size differences between clinical and community cohorts and various patterns of missing data.
Methods
We conducted genome-wide association studies of major depressive symptoms in three cohorts that were enriched for participants with a diagnosis of depression (Psychiatric Genomics Consortium, Australian Genetics of Depression Study, Generation Scotland) and three community cohorts who were not recruited on the basis of diagnosis (Avon Longitudinal Study of Parents and Children, Estonian Biobank, and UK Biobank). We fit a series of confirmatory factor models with factors that accounted for how symptom data was sampled and then compared alternative models with different symptom factors.
Results
The best fitting model had a distinct factor for Appetite/Weight symptoms and an additional measurement factor that accounted for the skip-structure in community cohorts (use of Depression and Anhedonia as gating symptoms).
Conclusion
The results show the importance of assessing the directionality of symptoms (such as hypersomnia versus insomnia) and of accounting for study and measurement design when meta-analyzing genetic association data.
Attention-deficit hyperactivity disorder (ADHD) is often comorbid with other medical conditions in adult patients. However, ADHD is extremely underdiagnosed in adults and little is known about the medical comorbidities in undiagnosed adult individuals with high ADHD liability. In this study we investigated associations between ADHD genetic liability and electronic health record (EHR)-based ICD-10 diagnoses across all diagnostic categories, in individuals without ADHD diagnosis history.
Methods
We used data from the Estonian Biobank cohort (N = 111 261) and generated polygenic risk scores (PRS) for ADHD (PRSADHD) based on the ADHD genome-wide association study. We performed a phenome-wide association study (PheWAS) to test for associations between standardized PRSADHD and 1515 EHR-based ICD-10 diagnoses in the full and sex-stratified sample. We compared the observed significant ICD-10 associations to associations with (1) ADHD diagnosis and (2) questionnaire-based high ADHD risk analyses.
Results
After Bonferroni correction (p = 3.3 × 10−5) we identified 80 medical conditions associated with PRSADHD. The strongest evidence was seen with chronic obstructive pulmonary disease (OR 1.15, CI 1.11–1.18), obesity (OR 1.13, CI 1.11–1.15), and type 2 diabetes (OR 1.11, CI 1.09–1.14). Sex-stratified analysis generally showed similar associations in males and females. Out of all identified associations, 40% and 78% were also observed using ADHD diagnosis or questionnaire-based ADHD, respectively, as the predictor.
Conclusions
Overall our findings indicate that ADHD genetic liability is associated with an increased risk of a substantial number of medical conditions in undiagnosed individuals. These results highlight the need for timely detection and improved management of ADHD symptoms in adults.
Existing evidence for gene × environment interaction (G × E) in neuroticism largely relies on candidate gene studies, although neuroticism is highly polygenic. This study aimed to investigate the long-term associations between polygenic risk scores for neuroticism (PRSN), objective childhood adversity and their interplay on emotional health aspects such as neuroticism itself, depressive symptoms, anxiety symptoms, loneliness and life satisfaction.
Methods
The sample consisted of reared-apart (TRA) and reared-together (TRT) middle- and old age twins (N = 699; median age at separation = 2). PRSN were created under nine p value cut-off thresholds (pT-s) and the pT with the highest degree of neuroticism variance explained was chosen for subsequent analyses. Linear regressions were used to assess the associations between PRSN, childhood adversity (being reared apart) and emotional health. G × E was further investigated using a discordant twin design.
Results
PRSN explained up to 1.7% (pT < 0.01) of phenotypic neuroticism in the total sample. Analyses across two separation groups revealed substantial heterogeneity in the variance explained by PRSN; 4.3% was explained in TRT, but almost no effect was observed in TRA. Similarly, PRSN explained 4% and 1.7% of the variance in depressive symptoms and loneliness, respectively, only in TRT. A significant G × E interaction was identified for depressive symptoms.
Conclusions
By taking advantage of a unique sample of adopted twins, we demonstrated the presence of G × E in neuroticism and emotional health using PRSN and childhood adversity. Our results may indicate that genome-wide association studies are detecting genetic main effects associated with neuroticism, but not those susceptible to early environmental influences.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.