We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Cassini Orbiter mission, launched in 1997, has provided state-of-the-art information into the origins and workings of Saturn. Drawing from new discoveries and scientific insight from the mission, this book provides a detailed overview of the planet as revealed by Cassini. Chapters by eminent planetary scientists and researchers from across the world comprehensively review the current state of knowledge regarding Saturn's formation, interior, atmosphere, ionosphere, thermosphere and magnetosphere. Specialised chapters discuss the planet's seasonal variability; the circulation of strong zonal winds; the constantly changing polar aurorae; and the Great Storm of 2010–2011, the most powerful convective storm ever witnessed by humankind. Documenting the latest research on the planet, from its formation to how it operates today, this is an essential reference for graduate students, researchers and planetary scientists.
Despite the lack of another Flagship-class mission such as Cassini–Huygens, prospects for the future exploration of Saturn are nevertheless encouraging. Both NASA and the European Space Agency (ESA) are exploring the possibilities of focused interplanetary missions (1) to drop one or more in situ atmospheric entry probes into Saturn and (2) to explore the satellites Titan and Enceladus, which would provide opportunities for both in situ investigations of Saturn’s magnetosphere and detailed remote-sensing observations of Saturn’s atmosphere. Additionally, a new generation of powerful Earth-based and near-Earth telescopes with advanced instrumentation spanning the ultraviolet to the far-infrared promise to provide systematic observations of Saturn’s seasonally changing composition and thermal structure, cloud structures and wind fields. Finally, new advances in amateur telescopic observations brought on largely by the availability of low-cost, powerful computers, low-noise, large-format cameras, and attendant sophisticated software promise to provide regular, longterm observations of Saturn in remarkable detail.
This chapter reviews the state of our knowledge about Saturn’s polar atmosphere that has been revealed through Earth- and space-based observation as well as theoretical and numerical modeling. In particular, the Cassini mission to Saturn, which has been in orbit around the ringed planet since 2004, has revolutionized our understanding of the planet. The current review updates a previous review by Del Genio et al. (2009), written after Cassini’s primary mission phase that ended in 2008, by focusing on the north polar region of Saturn and comparing it to the southern high latitudes. Two prominent features in the northern high latitudes are the northern hexagon and the north polar vortex; we extensively review observational and theoretical investigations to date of both features. We also review the seasonal evolution of the polar regions using the observational data accumulated during the Cassini mission since 2004 (shortly after the northern winter solstice in 2002), through the equinox in 2009, and approaching the next solstice in 2017. We conclude the current review by listing unanswered questions and describing the observations of the polar regions planned for the Grand Finale phase of the Cassini mission between 2016 and 2017.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.