We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Despite associations between hypoglycemia and cognitive performance using cross-sectional and experimental methods (e.g., Insulin clamp studies), few studies have evaluated this relationship in a naturalistic setting. This pilot study utilizes an EMA study design in adults with T1D to examine the impact of hypoglycemia and hyperglycemia, measured using CGM, on cognitive performance, measured via ambulatory assessment.
Participants and Methods:
Twenty adults with T1D (mean age 38.9 years, range 26-67; 55% female; 55% bachelor’s degree or higher; mean HbA1c = 8.3%, range 5.4% - 12.5%), were recruited from the Joslin Diabetes Center at SUNY Upstate Medical University. A blinded Dexcom G6 CGM was worn during everyday activities while completing 3-6 daily EMAs using personal smartphones. EMAs were delivered between 9 am and 9 pm, for 15 days. EMAs included 3 brief cognitive tests developed by testmybrain.org and validated for brief mobile administration (Gradual Onset CPT d-prime, Digit Symbol Matching median reaction time, Multiple Object Tracking percent accuracy) and self-reported momentary negative affect. Day-level average scores were calculated for the cognitive and negative affect measures. Hypoglycemia and hyperglycemia were defined as the percentage of time spent with a sensor glucose value <70 mg/dL or > 180 mg/dL, respectively. Daytime (8 am to 9 pm) and nighttime (9 pm to 8 am) glycemic excursions were calculated separately. Multilevel models estimated the between- and within-person association between the night prior to, or the same day, time spent in hypoglycemia or hyperglycemia and cognitive performance (each cognitive test was modeled separately). To evaluate the effect of between-person differences, person-level variables were calculated as the mean across the study and grand-mean centered. To evaluate the effect of within-person fluctuations, day-level variables were calculated as deviations from these person-level means.
Results:
Within-person fluctuations in nighttime hypoglycemia were associated with daytime processing speed. Specifically, participants who spent a higher percentage of time in hypoglycemia than their average percentage the night prior to assessment performed slower than their average performance on the processing speed test (Digit Symbol Matching median reaction time, b = 94.16, p = 0.042), while same day variation in hypoglycemia was not associated with variation in Digit Symbol Matching performance. This association remained significant (b = 97.46, p = 0.037) after controlling for within-person and between-person effects of negative affect. There were no significant within-person associations between time spent in hyperglycemia and Digit Symbol Matching, nor day/night hypoglycemia or hyperglycemia and Gradual Onset CPT or Multiple Object Tracking.
Conclusions:
Our findings from this EMA study suggest that when individuals with T1D experience more time in hypoglycemia at night (compared to their average), they have slower processing speed the following day, while same day hypoglycemia and hyperglycemia does not similarly impact processing speed performance. These results showcase the power of intensive longitudinal designs using ambulatory cognitive assessment to uncover novel determinants of cognitive variation in real world settings that have direct clinical applications for optimizing cognitive performance. Future research with larger samples is needed to replicate these findings.
Beginning in 2018, a quality improvement collaborative initiative in Brazil successfully reduced the baseline incidence density of healthcare-associated infections in intensive care settings after 2 years. We describe the adaptations of the quality improvement interventions as the COVID-19 pandemic emerged and how the pandemic affected the project outcomes.
It is unknown if the COVID-19 pandemic and public health measures had an immediate impact on stroke subtypes and etiologies in patients not infected with COVID-19. We aimed to evaluate if the proportion of non-COVID-19-related stroke subtypes (ischemic vs. hemorrhagic) and etiologies (cardioembolic, atherosclerosis, small vessel disease, and others) during the pandemic’s first wave were different from prepandemic.
Methods:
For this retrospective cohort study, we included patients without COVID-19 with ischemic or hemorrhagic stroke at two large Canadian stroke centers between March–May 2019 (prepandemic cohort) and March–May 2020 (pandemic cohort). Proportions of stroke subtypes and etiologies were compared between cohorts using chi-square tests.
Results:
The prepandemic cohort consisted of 234 stroke patients and the pandemic cohort of 207 stroke patients. There were no major differences in baseline characteristics. The proportions of ischemic versus hemorrhagic stroke were similar (ischemic stroke: 77% prepandemic vs. 75% pandemic; hemorrhagic stroke:12% prepandemic vs. 14% pandemic; p > 0.05). There were no differences in etiologies, except for a decreased proportion of ischemic stroke due to atherosclerosis in the pandemic cohort (26% prepandemic vs. 15% pandemic; difference: 10.6%, 95%CI: 1.4-19.7; p = 0.03). Notably, during the pandemic, the cause of ischemic stroke was more often unknown because of incomplete work-up (13.3% prepandemic vs. 28.2% pandemic, difference: 14.9%, 95%-CI: 5.7–24.2; p = <0.01).
Conclusions:
In this study, the pandemic had no clear effect on stroke subtypes and etiologies suggesting a limited impact of the pandemic on stroke triggers. However, the shift from atherosclerosis toward other causes warrants further exploration.
OBJECTIVES/GOALS: Early clinical case reports have described incidental epileptiform changes during electrophysiological monitoring. The objective of this study was to perform a systematic review of all existing investigations of epileptiform activity during sevoflurane use in pediatric anesthesia. The heterogenous EEG data will be analyzed in a meta analysis METHODS/STUDY POPULATION: A targeted, PICO-based clinical question was crafted and registered a priori on PROSPERO on 3/19/21. Under the guidance of a librarian from the Albert Einstein College of Medicine, a boolean search string was generated to search articles and gray literature for terms such as pediatric, sevoflurane and electroencephalogram in PubMed, OVID, Cochrane, Google Scholar, etc. We utilized the software platform tool COVIDENCE to manage our review. 495 references were imported for initial screening. 56 English-language, full-text studies were included for further review. The final 13 references were included in data extraction and Newcastle-Ottawa bias assessment. The characteristics of the studies and their primary outcomes were collected in tabular form. Strategies for data synthesis were discussed weekly. RESULTS/ANTICIPATED RESULTS: Epileptiform changes reported in the literature during pediatric sevoflurane anesthesia ranged from 0 - 95%. EEG data were acquired using a variety of recording systems with variable number of leads and heterogeneous outcomes reported. The periods of anesthesia monitoring were also heterogeneous. Characteristics of the studies are presented in Table 1. 495 references were imported for screening with 13 final references for data extraction. EEG abnormalities were reported in 204/649 (31.4%) subjects ranging in age from neonate to 18 years; the majority of studies utilized less than 16 channels of (10/13, 76.9%) (Table 1). There was variability in sevoflurane dosing, premedication (e.g., midzolam, hydroxyzine), and periods of anesthesia monitored. DISCUSSION/SIGNIFICANCE: There was heterogeneity noted across reviewed literature including study design, phases of anesthesia, ventilation methods, number of EEG leads recorded and adjuvant anesthetics administered. Nevertheless, this review rigorously classified epileptiform activity during Sevoflurane thereby influencing modern anesthesia.
This work presents the results of the physical characterization of palygorskite and its adsorptive behaviour for three solvatochromic dyes (Nile blue chloride (NBC), methylene blue (MTB) and dithizone (DTZ)). Adsorption isotherms were used to determine the maximum adsorption of the solvatochromic dyes on the palygorskite. The characterization of palygorskite was carried out via mineralogical and chemical analysis with X-ray diffraction, X-ray fluorescence, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy, surface-charge measurement (ζ-potential), thermogravimetric analysis, textural analysis and cation-exchange capacity analysis. The material consists of palygorskite and quartz and its chemistry is dominated by SiO2, MgO and Fe2O3. The specific surface area and cation-exchange capacity of the palygorskite are 142 m2 g–1 and 41 cmol(+) kg–1, respectively. The SEM and TEM analyses showed a fibrous structure with fibres 20–100 nm long. The thermogravimetric analysis showed three endothermic events at 57.3°C, 171.8°C and 439.6°C. The adsorption capacities of the palygorskite for NBC (basic pH), MTB (basic pH) and DTZ (neutral pH) were 0.082, 0.013 and 0.102 g g–1, respectively. The adsorptions of NBC and MTB were fitted with the Langmuir isotherm model and the adsorption of DTZ was fitted with the Sips model.
The fibrous scaffolds for bone tissue engineering that mimic the extracellular matrix with bioactive and bactericidal properties could provide adequate conditions for regeneration of damaged bone. Electrospun ultrathin fiber covered with nano-hydroxyapatite is a favorable fibrous scaffold design. We developed a fast and reproducible strategy to produce polyvinylidene fluoride (PVDF)/nano-hydroxyapatite (nHAp) nanofibrous scaffolds with bactericidal and bioactive properties. Fibrous PVDF scaffolds were obtained first by the electrospinning method. Then, their surfaces were modified using oxygen plasma treatment followed by electrodeposition of nHAp. This process formed nanofibrous and superhydrophilic PVDF fibers (133.6 nm, fiber average diameter) covered with homogeneous nHAp (202.6 nm, average particle diameter) crystals. Energy-dispersive X-ray spectrometry demonstrated the presence of calcium phosphate, indicating a Ca/P molar ratio of approximately 1.64. X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy spectra identified β-phase of nHAp. Thermal analysis indicated a slight reduction in stability after nHAp electrodeposition. Bactericidal assays showed that nHAp exhibited 99.8% efficiency against Pseudomonas aeruginosa bacteria. The PVDF/Plasma and PVDF/nHAp groups had the highest cell viability, total protein, and alkaline phosphatase activity by 7 days after exposure of the scaffolds to MG63 cell culture. Therefore, the developed scaffolds are an exciting alternative for application in bone regeneration.
The chronic kidney disease (CKD) and diabetes mellitus (DM) are considered a serious public health problem. The objective was investigating the association of DM with the anthropometric measures, biochemical profile and dietary intake in patients with CKD. Is a cross-sectional study done in 2017, with 51 patients previously diagnosed with CKD. We collect socio-demographic, lifestyle variables, anthropometric measurements, biochemical profile and dietary intake. We using the Kolmogorov–Smirnov test, followed by Pearson's χ2 test and Student's t test. Data were analysed using several multivariable logistic regression models, including the socio-demographic, anthropometric, dietary intake and biochemical variable. Variables with P ≤ 0⋅20 in the univariate analyses were selected and kept in the block in the simple and multiple logistic regression analysis, to determine the differences between the categories and the factors associated with the presence of DM or not, remaining in the model final, only the significant variables (P ≤ 0⋅05). Each variable was adjusted for all other variables included in the univariate analysis. The strength of the association was assessed by the odds ratio and 95% confidence intervals (CI). The multivariate logistic regression analysis evidenced that the increase of 1 cm in waist circumference and 1 mg/dl in VLDL-c values increases the chance of DM, respectively, by 8⋅4% (OR 1⋅076; P 0⋅05) and 8⋅8% (OR 1⋅102; P 0⋅01). In contrast, an increase of 1 mg/dl in total cholesterol decreases the chance of developing DM by 3⋅1% (OR 0⋅965; P 0⋅01), that is, it becomes a protective factor. The present study identified the associations between overweight, dietary intake and biochemical tests.
We evaluated the differences between the supplementation of urea in rumen and/or abomasum on forage digestion, N metabolism and urea kinetics in cattle fed a low-quality tropical forage. Five Nellore heifers were fitted with rumen and abomasum fistulas and assigned to a Latin square design. The treatments were control, continuous infusion of urea in the abomasum (AC), continuous infusion of urea in the rumen, a pulse dose of urea in the rumen every 12 h (PR) and a combination of PR and AC. The control exhibited the lowest (P < 0·10) faecal and urinary N losses, which were, overall, increased by supplementation. The highest urinary N losses (P < 0·10) were observed when urea was either totally or partially supplied as a ruminal pulse dose. The rumen N balance was negative for the control and when urea was totally supplied in the abomasum. The greatest microbial N production (P < 0·10) was obtained when urea was partially or totally supplied in the abomasum. Urea supplementation increased (P < 0·10) the amount of urea recycled to the gastrointestinal tract and the amount of urea-N returned to the ornithine cycle. The greatest (P < 0·10) amounts of urea-N used for anabolism were observed when urea was totally and continuously infused in the abomasum. The continuous abomasal infusion also resulted in the highest (P < 0·10) assimilation of microbial N from recycling. The continuous releasing of urea throughout day either in the rumen or abomasum is able to improve N accretion in the animal body, despite mechanism responsible for that being different.
El estudio del registro arqueobotánico asociado a un individuo femenino del sitio de Quilicura 1 permitió acercarnos a entender cómo los contextos funerarios del periodo Tardío (1400-1536 dC) contribuyen a la comprensión de los procesos sociopolíticos asociados a la presencia inka en la zona central de Chile. A través de los carporrestos y microrrestos de los residuos de uso de piezas cerámicas ofrendadas, se logró determinar el uso de plantas silvestres y domesticadas en la preparación de alimentos para los difuntos. Estas comidas y preparaciones tipo chicha, además de la presencia de un conjunto de artefactos vinculados a su preparación y consumo, habrían sido la esencia de la hospitalidad, una actividad fundamental en la integración eficiente de las poblaciones locales y, por ende, del funcionamiento del Tawantinsuyu.
The aim of this study was to characterize the protein profile of ovarian follicular fluid (FF) of brown brocket deer (Mazama gouazoubira). Five adult females received an ovarian stimulation treatment and the FF was collected by laparoscopy from small/medium (≤3.5 mm) and large (>3.5 mm) follicles. Concentrations of soluble proteins in FF samples were measured and proteins were analyzed by 1-D SDS-PAGE followed by tryptic digestion and tandem mass spectrometry. Data from protein list defined after a Mascot database search were analyzed using the STRAP software tool. For the protein concentration, no significant difference (P > 0.05) was observed between small/medium and large follicles: 49.2 ± 22.8 and 56.7 ± 27.4 μg/μl, respectively. Mass spectrometry analysis identified 13 major proteins, but with no significant difference (P > 0.05) between follicle size class. This study provides insight into elucidating folliculogenesis in brown brocket deer.
The adaptive changes of the foetal heart in intrauterine growth restriction can persist postnatally. Data regarding its consequences for early circulatory adaptation to extrauterine life are scarce. The aim of this study was to assess cardiac morphometry and function in newborns with late-onset intrauterine growth restriction to test the hypothesis that intrauterine growth restriction causes cardiac shape and functional changes at birth.
Methods
A comprehensive echocardiographic study was performed in 25 neonates with intrauterine growth restriction and 25 adequate-for-gestational-age neonates.
Results
Compared with controls, neonates with intrauterine growth restriction had more globular ventricles, lower longitudinal tricuspid annular motion, and higher left stroke volume without differences in the heart rate. Neonates with intrauterine growth restriction also showed subclinical signs of diastolic dysfunction in the tissue Doppler imaging with lower values of early (e′) diastolic annular peak velocities in the septal annulus. Finally, the Tei index in the tricuspid annulus was higher in the intrauterine growth restriction group.
Conclusion
Neonates with history of intrauterine growth restriction showed cardiac remodelling and signs of systolic and diastolic dysfunction. Overall, there was a significant tendency to worse cardiac function results in the right heart. The adaptation to extrauterine life occurred with more globular hearts, higher stroke volumes but a similar heart rate compared to adequate-for-gestational-age neonates.
The aim of this study was to evaluate the effect of nerolidol free (N-F) and nerolidol-loaded in nanospheres (N-NS) on the hepatic antioxidant/oxidant status of mice experimentally infected by Trypanosoma evansi. In the liver it was measured: reactive oxygen species (ROS), thiobarbituric reactive acid substances (TBARS) and non-protein thiols (NPSH), catalase (CAT), superoxide dismutase (SOD) and glutathione-S-transferase (GST) and performed histopathological examination. In addition, seric levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured. Liver samples from mice infected by T. evansi showed increased (P < 0·05) ROS, TBARS, AST and ALT levels and SOD activity, and decreased NPSH levels and CAT activity (P < 0·05) compared with uninfected animals. N-NS treatment prevented (P < 0·05) ROS and TBARS increase, and increased NPSH levels, and ameliorate CAT and SOD activities on liver of infected mice. Moreover, N-NS treatment reduced (P < 0·05) AST and ALT levels, and prevented histopathological changes caused by the parasite. N-NS protected the liver from the oxidative stress caused by T. evansi, which might be due to its antioxidant properties. Nerolidol might be considered a promising therapeutic agent against oxidative stress, and nanotechnology is an encouraging approach to be explored.
In this study, a model for wheeled mobile robots that includes a static friction model in the force balance at the robot's center of mass is presented. Additionally, a least-squares method to linearly combine functions is proposed to estimate the friction coefficients. The experimental and simulation results are discussed to demonstrate the effectiveness of this approach in indoor environments for two floor types.
Different dietary interventions have been identified as potential modifiers of adiponectin concentrations, and they may be influenced by lipid intake. We identified studies investigating the effect of dietary lipids (type/amount) on adiponectin concentrations in a systematic review with meta-analysis. A literature search was conducted until July 2013 using databases such as Medline, Embase and Scopus (MeSH terms: ‘adiponectin’, ‘dietary lipid’, ‘randomized controlled trials (RCT)’). Inclusion criteria were RCT in adults analysing adiponectin concentrations with modification of dietary lipids. Among the 4930 studies retrieved, fifty-three fulfilled the inclusion criteria and were grouped as follows: (1) total dietary lipid intake; (2) dietary/supplementary n-3 PUFA; (3) conjugated linoleic acid (CLA) supplementation; (4) other dietary lipid interventions. Diets with a low fat content in comparison to diets with a high-fat content were not associated with positive changes in adiponectin concentrations (twelve studies; pooled estimate of the difference in means: − 0·04 (95 % CI − 0·82, 0·74) μg/ml). A modest increase in adiponectin concentrations with n-3 PUFA supplementation was observed (thirteen studies; 0·27 (95 % CI 0·07, 0·47) μg/ml). Publication bias was found by using Egger's test (P= 0·01) and funnel plot asymmetry. In contrast, CLA supplementation reduced the circulating concentrations of adiponectin compared with unsaturated fat supplementation (seven studies; − 0·74 (95 % CI − 1·38, − 0·10) μg/ml). However, important sources of heterogeneity were found as revealed by the meta-regression analyses of both n-3 PUFA and CLA supplementation. Results of new RCT would be necessary to confirm these findings.
We present a neonate with an antenatal diagnosis of Scimitar syndrome and aortic arch hypoplasia. After delivery, computerised tomography scan additionally revealed an anomalous origin of the circumflex coronary artery from the main pulmonary artery. The management of this rare combination is discussed.
Nanocomposites formed by ferrimagnetic and ferroelectric materials are multiferroic material in which magnetoelectric coupling occurs via piezoelectricity and magnetostriction phenomena. These nanocomposites have a variety of applications in tunable microwave devices using electric control of spin wave propagation or new magnetic memories in which the magnetic response is controlled by electric field.
In this work, transparent and homogeneous thin films of barium titanate interleaved with cobalt ferrite were prepared by sol–gel method using dip-coating process. Films of pure barium titanate and cobalt ferrite were also prepared for comparison. The nanocomposite films were deposited onto clean quartz substrates, where a coating of each material was deposited interleaved, where the cobalt ferrite film formed the last layer. The films were dried in air after each dipping and heated at 900 oC for 1 hour to convert the amorphous films into crystalline ones. The samples were characterized by low angle X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) and UV-Vis spectroscopy.
Magnetic nanocomposite thin films formed by cobalt ferrite dispersed in silica matrix were prepared by sol-gel process using tetraethylorthosilicate (TEOS) as a precursor of silica, and metallic nitrates as precursors of the ferrite. The films were prepared with 5–50 wt. % ferrite contents and deposited on substrate using the dip-coating process. The films obtained were adherent, transparent, homogeneous and free of microcracks, with thickness between 30 and 500 nm. The films obtained presented crystalline CoFe2O4 phases dispersed in SiO2 amorphous matrix and saturation magnetization of approximately 9 emu/g considering the composite mass and 30 emu/g considering the ferrite mass.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.