We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To determine whether electronically available comorbidities and laboratory values on admission are risk factors for hospital-onset Clostridioides difficile infection (HO-CDI) across multiple institutions and whether they could be used to improve risk adjustment.
Patients:
All patients at least 18 years of age admitted to 3 hospitals in Maryland between January 1, 2016, and January 1, 2018.
Methods:
Comorbid conditions were assigned using the Elixhauser comorbidity index. Multivariable log-binomial regression was conducted for each hospital using significant covariates (P < .10) in a bivariate analysis. Standardized infection ratios (SIRs) were computed using current Centers for Disease Control and Prevention (CDC) risk adjustment methodology and with the addition of Elixhauser score and individual comorbidities.
Results:
At hospital 1, 314 of 48,057 patient admissions (0.65%) had a HO-CDI; 41 of 8,791 patient admissions (0.47%) at community hospital 2 had a HO-CDI; and 75 of 29,211 patient admissions (0.26%) at community hospital 3 had a HO-CDI. In multivariable regression, Elixhauser score was a significant risk factor for HO-CDI at all hospitals when controlling for age, antibiotic use, and antacid use. Abnormal leukocyte level at hospital admission was a significant risk factor at hospital 1 and hospital 2. When Elixhauser score was included in the risk adjustment model, it was statistically significant (P < .01). Compared with the current CDC SIR methodology, the SIR of hospital 1 decreased by 2%, whereas the SIRs of hospitals 2 and 3 increased by 2% and 6%, respectively, but the rankings did not change.
Conclusions:
Electronically available patient comorbidities are important risk factors for HO-CDI and may improve risk-adjustment methodology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.