Incorporating paleontological data into phylogenetic inference can greatly enrich our understanding of evolutionary relationships by providing insights into the diversity and morphological evolution of a clade over geological timescales. Phylogenetic analysis of fossil data has been significantly aided by the introduction of the fossilized birth–death (FBD) process, a model that accounts for fossil sampling through time. A decade on from the first implementation of the FBD model, we explore its use in more than 170 empirical studies, summarizing insights gained through its application. We identify a number of challenges in applying the model in practice: it requires a working knowledge of paleontological data and their complex properties, Bayesian phylogenetics, and the mechanics of evolutionary models. To address some of these difficulties, we provide an introduction to the Bayesian phylogenetic framework, discuss important aspects of paleontological data, and finally describe the assumptions of the models used in paleobiology. We also present a number of exemplar empirical studies that have used the FBD model in different ways. Through this review, we aim to provide clarity on how paleontological data can best be used in phylogenetic inference. We hope to encourage communication between model developers and empirical researchers, with the ultimate goal of developing models that better reflect the data we have and the processes that generated them.