We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Addition series field experiments were conducted near Moscow, ID, in 1987 and 1988 to determine the relative aggressiveness of spring barley and wild oat and to determine the effect of barley and wild oat density and proportion on barley grain yield and wild oat seed rain. Regression analysis was used to describe the relationship of the aboveground biomass and grain yield to species density. Barley was more aggressive than wild oat. Barley biomass was affected most by intraspecific competition, while wild oat biomass was affected most by interspecific competition. Barley aggressiveness changed little throughout the growing season. Wild oat aggressiveness varied but was always less than barley aggressiveness. Increasing wild oat density had a negative, asymptotic-type effect on barley grain yield at all barley densities. However, the effect of wild oat was greatest at the lower density of barley. Increasing barley density decreased wild oat seed rain.
A 136-m-long drill core of sediments was recovered from tropical high-altitude Lake Titicaca, Bolivia-Peru, enabling a reconstruction of past climate that spans four cycles of regional glacial advance and retreat and that is estimated to extend continuously over the last 370,000 yr. Within the errors of the age model, the periods of regional glacial advance and retreat are concordant respectively with global glacial and interglacial stages. Periods of ice advance in the southern tropical Andes generally were periods of positive water balance, as evidenced by deeper and fresher conditions in Lake Titicaca. Conversely, reduced glaciation occurred during periods of negative water balance and shallow closed-basin conditions in the lake. The apparent coincidence of positive water balance of Lake Titicaca and glacial growth in the adjacent Andes with Northern Hemisphere ice sheet expansion implies that regional water balance and glacial mass balance are strongly influenced by global-scale temperature changes, as well as by precessional forcing of the South American summer monsoon.
Email your librarian or administrator to recommend adding this to your organisation's collection.