We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Climate change is significantly altering our planet, with greenhouse gas emissions and environmental changes bringing us closer to critical tipping points. These changes are impacting species and ecosystems worldwide, leading to the urgent need for understanding and mitigating climate change risks. In this study, we examined global research on assessing climate change risks to species and ecosystems. We found that interest in this field has grown rapidly, with researchers identifying key factors such as species' vulnerability, adaptability, and exposure to environmental changes. Our work highlights the importance of developing better tools to predict risks and create effective protect strategies.
Technical summary
The rising concentration of greenhouse gases, coupled with environmental changes such as albedo shifts, is accelerating the approach to critical climate tipping points. These changes have triggered significant biological responses on a global scale, underscoring the urgent need for robust climate change risk assessments for species and ecosystems. We conducted a systematic literature review using the Web of Science database. Our bibliometric analysis shows an exponential growth in publications since 2000, with over 200 papers published annually since 2019. Our bibliometric analysis reveals that the number of studies has exponentially increased since 2000, with over 200 papers published annually since 2019. High-frequency keywords such as ‘impact’, ‘risk’, ‘vulnerability’, ‘response’, ‘adaptation’, and ‘prediction’ were prevalent, highlighting the growing importance of assessing climate change risks. We then identified five universally accepted concepts for assessing the climate change risk on species and ecosystems: exposure, sensitivity, adaptivity, vulnerability, and response. We provided an overview of the principles, applications, advantages, and limitations of climate change risk modeling approaches such as correlative approaches, mechanistic approaches, and hybrid approaches. Finally, we emphasize that the emerging trends of risk assessment of climate change, encompass leveraging the concept of telecoupling, harnessing the potential of geography, and developing early warning mechanisms.
Social media summary
Climate change risks to biodiversity and ecosystem: key insights, modeling approaches, and emerging strategies.
Metabolic enzymes are the catalysts that drive the biochemical reactions essential for sustaining life. Many of these enzymes are tightly regulated by feedback mechanisms. To fully understand their roles and modulation, it is crucial to investigate the relationship between their structure, catalytic mechanism, and function. In this perspective, by using three examples from our studies on Mycobacterium tuberculosis (Mtb) isocitrate lyase and related proteins, we highlight how an integrated approach combining structural, activity, and biophysical data provides insights into their biological functions. These examples underscore the importance of employing fast-fail experiments at the early stages of a research project, emphasise the value of complementary techniques in validating findings, and demonstrate how in vitro data combined with chemical, biochemical, and physiological knowledge can lead to a broader understanding of metabolic adaptations in pathogenic bacteria. Finally, we address the unexplored questions in Mtb metabolism and discuss how we expand our approach to include microbiological and bioanalytical techniques to further our understanding. Such an integrated and interdisciplinary strategy has the potential to uncover novel regulatory mechanisms and identify new therapeutic opportunities for the eradication of tuberculosis. The approach can also be broadly applied to investigate other biochemical networks and complex biological systems.
To examine feasibility, acceptability, and preliminary effectiveness of a novel group-based telemedicine psychoeducation programme aimed at supporting psychological well-being among adolescents with Fontan-palliated CHD.
Study design:
A 5-week telemedicine psychoeducation group-based programme (WE BEAT) was developed for adolescents (N = 20; 13–18 years) with Fontan-palliated CHD aimed at improving resiliency and psychological well-being. Outcome measures included surveys of resilience (Connor–Davidson Resilience Scale), benefit finding (Benefit/Burden Scale for Children), depression, anxiety, peer relationships, and life satisfaction (National Institutes of Health Patient-Reported Outcomes Measurement Information System scales). Within-subject changes in these outcomes were compared pre- to post-intervention using Cohen’s d effect size. In addition, acceptability in the form of satisfaction measures and qualitative feedback was assessed.
Results:
Among eligible patients reached, 68% expressed interest in study participation. Of those consented, 77% have been scheduled for a group programme to date with 87% programme completion. Twenty adolescents (mean age 16.1 ± SD 1.6 years) participated across five WE BEAT group cohorts (range: 3–6 participants per group). The majority (80%) attended 4–5 sessions in the 5-session programme, and the median programme rating was a 9 out of 10 (10 = most favourable rating). Following WE BEAT participation, resiliency (d = 0.44) and perceptions of purpose in life increased (d = 0.26), while depressive symptoms reduced (d = 0.36). No other changes in assessed outcome measures were noted.
Conclusions:
These findings provide preliminary support that a group-based, telemedicine delivered psychoeducation programme to support psychological well-being among adolescents with CHD is feasible, acceptable, and effective. Future directions include examining intervention effects across diverse centres, populations, and implementation methods.
A well-known method of studying iconic words is through the collection of subjective ratings. We collected such ratings regarding familiarity, iconicity, imagery/imageability, concreteness, sensory experience rating (SER), valence and arousal for Mandarin ABB words. This is a type of phrasal compound consisting of a prosaic syllable A and a reduplicated BB part, resulting in a vivid phrasal compound, for example, wù-mángmáng 雾茫茫 ‘completely foggy’. The correlations between the newly collected ABB ratings are contrasted with two other sets of prosaic word ratings, demonstrating that variables that characterize ABB words in an absolute sense may not play a distinctive role when contrasted with other types of words. Next, we provide another angle for looking at ABB words, by investigating to what degree rating data converges with corpus data. By far, the variable that characterizes ABB items consistently throughout these case studies is their high score for imageability, showing that they are indeed rightfully characterized as vivid. Methodologically, we show that it pays off to not take rating data at face value but to contrast it with other comparable datasets of a different phenomenon or data about the same phenomenon compiled in an ontologically different manner.
Oil palm has been criticized for being an environmentally unfriendly oil crop. In recent decades, oil palm plantations have extended into conservation landscapes, causing severe environmental damage and harming biodiversity. Nevertheless, oil palm remains a highly productive oil crop from which most of the world's vegetable oil is produced. Therefore, measuring the environmental impact of oil palm plantations and identifying suitable land to support its sustainable development is crucial.
Technical summary
To meet the rising global palm oil demand sustainably, we tracked annual land cover changes in oil palm plantation and mapped areas worldwide suitable for sustainable oil palm cultivation. From 1982 to 2019, 3.6 Mha of forests were converted to oil palm plantations. Despite a recent decline in overall conversion, the shift from forest to oil palm plantations has become increasingly more common over the last decade, rising from 14.1 to 34.5% between 2009 and 2019. During 1982–2019, 2.23 Mha of peatland and 0.1 Mha of protected areas were converted for oil palm plantations. The potential sustainable land amounts to 103.5–317.9 Mha (Asia: 44.6–105.1 Mha, Africa: 34.7–96.4 Mha, and Latin America: 35.2–116.5 Mha). Future oil palm expansion is anticipated to take place in countries like Brazil, Nigeria, Colombia, Indonesia, Ivory Coast, the Democratic Republic of the Congo, and Ghana, where more sustainable land is available for cultivation. Malaysia, on the other hand, is about to exceed the area of sustainable cultivation, and further expansion is not recommended. These findings can advance our understanding of the environmentally damaging impacts of oil palm and enhance the feasibility of sustainable oil palm development.
Social media summary
How should suitable land be chosen for the establishment of oil palm plantations to support the sustainable development of the oil palm plantation industry?
Chronic insomnia is a highly prevalent disorder affecting approximately one-in-three Americans. Insomnia is associated with increased cognitive and brain arousal. Compared to healthy individuals, those with insomnia tend to show greater activation/connectivity within the default mode network (DMN) of the brain, consistent with the hyperarousal theory. We investigated whether it would be possible to suppress activation of the DMN to improve sleep using a type of repetitive transcranial magnetic stimulation (rTMS) known as continuous theta burst stimulation (cTBS).
Participants and Methods:
Participants (n=9, 6 female; age=25.4, SD=5.9 years) meeting criteria for insomnia/sleep disorder on standardized scales completed a counterbalanced sham-controlled crossover design in which they served as their own controls on two separate nights of laboratory monitored sleep on separate weeks. Each session included two resting state functional magnetic resonance imaging (fMRI) sessions separated by a brief rTMS session. Stimulation involved a 40 second cTBS stimulation train applied over an easily accessible cortical surface node of the DMN located at the left inferior parietal lobe. After scanning/stimulation, the participant was escorted to an isolated sleep laboratory bedroom, fitted with polysomnography (PSG) electrodes, and allowed an 8-hour sleep opportunity from 2300 to 0700. PSG was monitored continuously and scored for standard outcomes, including total sleep time (TST), percentage of time various sleep stages, and number of arousals.
Results:
Consistent with our hypothesis, a single session of active cTBS produced a significant reduction of functional connectivity (p < .05, FDR corrected) within the DMN. In contrast, the sham condition produced no changes in functional connectivity from pre- to post-treatment. Furthermore, after controlling for age, we also found that the active treatment was associated with meaningful trends toward greater overnight improvements in sleep compared to the sham condition. First, the active cTBS condition was associated with significantly greater TST compared to sham (F(1,7)=14.19, p=.007, partial eta-squared=.67). Overall, individuals obtained 26.5 minutes more sleep on the nights that they received the active cTBS compared to the sham condition. Moreover, the active cTBS condition was associated with a significant increase in the percentage of time in rapid eye movement (REM%) sleep compared to the sham condition (F(1,7)=7.05, p=.033, partial eta-squared=.50), which was significant after controlling for age. Overall, active treatment was associated with an increase of 6.76% more of total sleep time in REM compared to sham treatment. Finally, active cTBS was associated with fewer arousals from sleep (t(8) = -1.84, p = .051, d = .61), with an average of 15.1 fewer arousals throughout the night than sham.
Conclusions:
Overall, these findings suggest that this simple and brief cTBS approach can alter DMN brain functioning in the expected direction and was associated with trends toward improved objectively measured sleep, including increased TST and REM% and fewer arousals during the night following stimulation. These findings emerged after only a single 40-second treatment, and it remains to be seen whether multiple treatments over several days or weeks can sustain or even improve upon these outcomes.
Retropharyngeal lymphadenectomy is challenging. This study investigated a minimally invasive approach to salvage retropharyngeal lymphadenectomy in patients with nasopharyngeal carcinoma.
Methods
An anatomical study of four fresh cadaveric heads was conducted to demonstrate the relevant details of retropharyngeal lymphadenectomy using the endoscopic transoral medial pterygomandibular fold approach. Six patients with nasopharyngeal cancer with retropharyngeal lymph node recurrence, who underwent retropharyngeal lymphadenectomy with the endoscopic transoral medial pterygomandibular fold technique at the Eye and ENT Hospital of Fudan University from July to December 2021, were included in this study.
Results
The anatomical study demonstrated that the endoscopic transoral medial pterygomandibular fold approach offers a short path and minimally invasive approach to the retropharyngeal space. The surgical procedure was well tolerated by all patients, with no significant post-operative complications.
Conclusion
The endoscopic transoral medial pterygomandibular fold approach is safe and efficient for retropharyngeal lymphadenectomy.
OBJECTIVES/GOALS: In vitro models that mimic the human respiratory system are needed to assess the toxicity of inhaled contaminants. Therefore, our goal is to establish a Dosimetric Aerosol in-Vitro Inhalation Device (DAVID) that delivers aerosols in different patterns to human lung cells cultured at an air-liquid interface (ALI). METHODS/STUDY POPULATION: The collection unit of DAVID was modified in this study to accommodate different deposition patterns (spots, annular ring, rectangle & circle). CuO aerosols of varying concentrations were generated using a 6-jet Collison nebulizer for varying time periods to achieve different doses. To quantify the doses that were delivered to cells, the samples were digested with nitric acid & analyzed by Inductively Coupled Plasma-Optical Emission Spectrometry. Following the exposure of A549 cells to CuO aerosols, cytotoxicity and mRNA expression (i.e., HMOX1 & IL-8) will be assessed via LDH and RT-qPCR to determine the effect of regional (mass deposited/area of the pattern) and global (mass deposited/area of the cell culture insert) doses in cells. RESULTS/ANTICIPATED RESULTS: The deposition areas covered by rectangular, spot, annular ring, and circular patterns are estimated to be 6, 17, 27 and 85% of the insert’s surface area, onto which cells are cultured. Results for the patterns tested (spots and annular ring) show that both the regional and global doses were greater for spots than annular ring. Also, the regional doses were higher than global doses. Irrespective of the patterns, the global doses were the same for nebulizer suspensions of 0.1-1 mg/mL. Statistical analysis by ANOVA revealed there was no significant difference in doses between replicate inserts used in the same trial. We anticipate that regional doses with aerosol deposition to a larger surface area of the cell culture insert will correspond with higher cytotoxicity and mRNA expression of HMOX1 and IL-8 in cells. DISCUSSION/SIGNIFICANCE: There are limited in vitro exposure systems that can efficiently deliver aerosols to lung cells, while also mimicking inhalation by humans. In addition to addressing this knowledge gap, we will show the role of regional & global doses in studying cellular response & the ability of DAVID to deliver aerosols in different deposition patterns.
COVID-19 has long-term impacts on public mental health, while few research studies incorporate multidimensional methods to thoroughly characterise the psychological profile of general population and little detailed guidance exists for mental health management during the pandemic. This research aims to capture long-term psychological profile of general population following COVID-19 by integrating trajectory modelling approaches, latent trajectory pattern identification and network analyses.
Methods
Longitudinal data were collected from a nationwide sample of 18 804 adults in 12 months after COVID-19 outbreak in China. Patient Health Questionnaire-9, Generalised Anxiety Disorder-7 and Insomnia Severity Index were used to measure depression, anxiety and insomnia, respectively. The unconditional and conditional latent growth curve models were fitted to investigate trajectories and long-term predictors for psychological symptoms. We employed latent growth mixture model to identify the major psychological symptom trajectory patterns, and ran sparse Gaussian graphical models with graphical lasso to explore the evolution of psychopathological network.
Results
At 12 months after COVID-19 outbreak, psychological symptoms generally alleviated, and five psychological symptom trajectories with different demographics were identified: normal stable (63.4%), mild stable (15.3%), mild-increase to decrease (11.7%), mild-decrease to increase (4.0%) and moderate/severe stable (5.5%). The finding indicated that there were still about 5% individuals showing consistently severe distress and approximately 16% following fluctuating psychological trajectories, who should be continuously monitored. For individuals with persistently severe trajectories and those with fluctuating trajectories, central or bridge symptoms in the network were mainly ‘motor abnormality’ and ‘sad mood’, respectively. Compared with initial peak and late COVID-19 phase, aftermath of initial peak might be a psychologically vulnerable period with highest network connectivity. The central and bridge symptoms for aftermath of initial peak (‘appetite change’ and ‘trouble of relaxing’) were totally different from those at other pandemic phases (‘sad mood’).
Conclusions
This research identified the overall growing trend, long-term predictors, trajectory classes and evolutionary pattern of psychopathological network of psychological symptoms in 12 months after COVID-19 outbreak. It provides a multidimensional long-term psychological profile of the general population after COVID-19 outbreak, and accentuates the essentiality of continuous psychological monitoring, as well as population- and time-specific psychological management after COVID-19. We believe our findings can offer reference for long-term psychological management after pandemics.
The coronavirus disease 2019 (COVID-19) pandemic is a major threat to the public. However, the comprehensive profile of suicidal ideation among the general population has not been systematically investigated in a large sample in the age of COVID-19.
Methods
A national online cross-sectional survey was conducted between February 28, 2020 and March 11, 2020 in a representative sample of Chinese adults aged 18 years and older. Suicidal ideation was assessed using item 9 of the Patient Health Questionnaire-9. The prevalence of suicidal ideation and its risk factors was evaluated.
Results
A total of 56,679 participants (27,149 males and 29,530 females) were included. The overall prevalence of suicidal ideation was 16.4%, including 10.9% seldom, 4.1% often, and 1.4% always suicidal ideation. The prevalence of suicidal ideation was higher in males (19.1%) and individuals aged 18–24 years (24.7%) than in females (14.0%) and those aged 45 years and older (11.9%). Suicidal ideation was more prevalent in individuals with suspected or confirmed infection (63.0%), frontline workers (19.2%), and people with pre-existing mental disorders (41.6%). Experience of quarantine, unemployed, and increased psychological stress during the pandemic were associated with an increased risk of suicidal ideation and its severity. However, paying more attention to and gaining a better understanding of COVID-19-related knowledge, especially information about psychological interventions, could reduce the risk.
Conclusions
The estimated prevalence of suicidal ideation among the general population in China during COVID-19 was significant. The findings will be important for improving suicide prevention strategies during COVID-19.
Rosa x odorata (sect. Chinenses, Rosaceae) is an important species distributed only in Yunnan Province, China. There is an abundance of wild variation within the species. Using 22 germplasm resources collected from the wild, as well as R. chinensis var. spontanea, R. chinensis ‘Old Blush’ and R. lucidissima, this study involved morphological variation analysis, inter-trait correlation analysis, principal component analysis and clustering analysis based on 16 morphological traits. This study identified a high degree of morphological diversity in R. x odorata germplasm resources and the variation coefficients had a distribution range from 18.00 to 184.04%. The flower colour had the highest degree of variation, while leaflet length/width had the lowest degree of variation. Inter-trait correlation analysis revealed that there was an extremely significant positive correlation between leaflet length and leaflet width. There was also a significant positive correlation between the number of petals and duration of blooming, and the L* and a* values of flower colour were significantly negatively correlated. Principal component analysis screened five principal components with the highest cumulative contribution rate (81.679%) to population variance. Among the 16 morphological traits, style length, sepal width, flower diameter, flower colour, leaflet length and leaflet width were important indices that influenced the morphology of R. x odorata. This study offers guidance for the further development and utilization of R. x odorata germplasm resources.
The research of high-performance flexible supercapacitors is urgent due to the rapid development of wearable and portable electronics. The key challenge is the preparation of flexible electrodes with high areal capacitance since electrodes are the most important part of supercapacitors. Compared to those conventional electrodes loading with typical flexible substrates such as textile, PET, paper et al, free-standing electrodes have many advantages such as more efficient capacity contribution, solidly embedded active materials and thinner thickness. Herein, we have successfully fabricated a novel sandwich-like structure free-standing MoO3-rGO (reduced graphene oxide) composite film electrode for flexible supercapacitors using simple vacuum filtration method followed by HI reduction process. The obtained MoO3-rGO composite film electrode shows excellent electrochemical performance, whose areal specific capacitance reaches 8972 mF·cm-2 (1.5 mA·cm-2). Here, MoO3 provides pseudocapacitance and rGO provides double-layer capacitance. After cycling for 2000 cycles, the capacity retention is 86.7%, showing good cycle stability. Besides, the as-prepared composite film has good flexibility and will not break easily during following bending, rolling, folding or twisting steps. This study has been approved to be an important step for the high-performance electrode design for free-standing flexible supercapacitors.
Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84–88) presented a critique of our recently published paper in Cell Reports entitled ‘Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets’ (Lam et al., Cell Reports, Vol. 21, 2017, 2597–2613). Specifically, Hill offered several interrelated comments suggesting potential problems with our use of a new analytic method called Multi-Trait Analysis of GWAS (MTAG) (Turley et al., Nature Genetics, Vol. 50, 2018, 229–237). In this brief article, we respond to each of these concerns. Using empirical data, we conclude that our MTAG results do not suffer from ‘inflation in the FDR [false discovery rate]’, as suggested by Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84–88), and are not ‘more relevant to the genetic contributions to education than they are to the genetic contributions to intelligence’.
Surface exfoliation was observed on single-crystal silicon surface under the action of compressed plasma flow (CPF). This phenomenon is mainly attributed to the strong transient thermal stress impact induced by CPF. To gain a better understanding of the mechanism, a micro scale model combined with thermal conduction and linear elastic fracture mechanics was built to analyze the thermal stress distribution after energy deposition. After computation with finite element method, J integral parameter was applied as the criterion for fracture initiation evaluation. It was demonstrated that the formation of surface exfoliation calls for specific material, crack depth, and CPF parameter. The results are potentially valuable for plasma/matter interaction understanding and CPF parameter optimization.
It was reported that high blood cholesterol levels increased the susceptibility to mitochondrial dysfunction. This study hypothesized that the gestational hypercholesterolemia (HC) could induce the mitochondrial dysfunction in term human placenta. The eligible pregnant women were recruited from Xuanwu Hospital in Beijing during their first prenatal visit (before their 10th week of pregnancy). In total, 19 pregnant women whose serum total cholesterol levels were higher than 7.25 mm at third trimester (measured at 36–38 weeks) were selected as gestational HC. Other 19 pregnant women with normal cholesterol level matched with age, pre-gestational body mass index, and the neonatal gender were included as the control group. Full-term placenta samples were collected. The mitochondrial DNA (mtDNA) copy number, messenger RNA (mRNA) expression of cytochrome c oxidase subunit I, adenosine triphosphate monophosphatase 6 (ATP6ase), citrate synthase, peroxisome proliferator-activated receptor-γ (PPARγ) co-activator 1α, PPARγ co-activator 1β and estrogen-related receptor-α, and the activity of mitochondrial respiratory chain enzyme complex were measured. Pregnancy outcomes were obtained by extraction from medical records and the labor ward register. The results showed that only placental mtDNA copy number and mRNA expression of ATP6ase were significantly decreased in HC group. No significant differences were detected of other measurements between the two groups. These findings indicated that gestational HC might not induce the damage of placental function seriously.
Low-field magnetic stimulation (LFMS) has mood-elevating effect, and the increase of brain-derived neurotrophic factor (BDNF) is associated with antidepressant treatment. We evaluated the effects and association with BDNF of rhythmic LFMS in the treatment of major depressive disorder (MDD).
Methods
A total of 22 MDD patients were randomized to rhythmic alpha stimulation (RAS) or rhythmic delta stimulation (RDS), with 5 sessions per week, lasting for 6 weeks. Outcomes assessments included the 17-item Hamilton Depression Rating Scale (HAMD–17), the Hamilton Anxiety Rating Scale (HAMA), and the Clinical Global Impressions–Severity scale (CGI–S) at baseline and at weeks 1, 2, 3, 4, and 6. Serum BDNF level was measured at baseline and at weeks 2, 4, and 6.
Results
HAMD–17, HAMA, and CGI–S scores were significantly reduced with both RAS and RDS. RAS patients had numerically greater reductions in HAMD–17 scores than RDS patients (8.9 ± 7.4 vs. 6.2 ± 6.2, effect size [ES]=0.40), while RDS patients had greater improvement in HAMA scores (8.2 ± 8.0 vs. 5.3 ± 5.8, ES=0.42). RAS was associated with clinically relevant advantages in response (54.5% vs. 18.2%, number-needed-to-treat [NNT]=3) and remission (36.4% vs. 9.1%, NNT=4). BDNF increased significantly during the 6-week study period (p<0.05), with greater increases in RAS at weeks 4 and 6 (ES=0.66—0.76) and statistical superiority at week 2 (p=0.034, ES=1.23). Baseline BDNF in the 8 responders (24.8±9.0 ng/ml) was lower than in the 14 nonresponders (31.1±7.3 ng/ml, p=0.083, ES=–0.79), and BDNF increased more in responders (8.9±7.8 ng/ml) than in nonresponders (1.8±3.5 ng/ml, p=0.044). The change in BDNF at week 2 was the most strongly predicted response (p=0.016).
Conclusions
Rhythmic LFMS was effective for MDD. BDNF may moderate/mediate the efficacy of LFMS.
As the strong thermal effect in the surface, intense pulsed ion beam (IPIB) has been extensively used in material surface modification. The ablation is an important part in the interaction process between IPIB and material. In order to investigate the ablation mechanism, combined with IPIB dynamic energy spectrum and infrared imaging diagnostic results, a two-dimensional axisymmetric heat conduction model considering the effect of ablated material was constructed to describe the ablation process and calculate the lost mass of the targets. The influences of beam parameters and ablated matter on the ablation rate were discussed. The experimental and simulative results of ablation threshold and mass were compared.
As a kind of flash heat source, intense pulsed ion beam (IPIB) can be used for material surface modification. The ablation effect has important influence on interaction between IPIB and material. Therefore, the understanding of ablation mechanism is of great significance to IPIB application. In this work, pure zinc targets were irradiated and ablated by IPIB. In the ablation process under the different ion beam energy densities, the ablation products were collected by a monocrystalline silicon substrate. By analyzing the ablation products with scanning electron microscope and energy-dispersive spectrometer, the surface morphology, and the spatial distribution of ablation products quantity were obtained. The results are useful for clearing the ablation process and the influence of beam parameter on the ablation effect.
As the energy spread of intense pulsed electron beams (IPEB) strongly influences the irradiation effects, it has been of great importance to characterize the IPEB energy spectrum. With the combination of Child–Langmuir law and Monte Carlo simulation, the IPEB energy spectrum has been obtained in this work by transformation from the accelerating voltage applied to the diode. To verify the accuracy of this simple algorithm, a magnetic spectrometer with an imaging plate was designed to test the IPEB energy spectrum. The measurement was completed with IPEB generated by explosive emission electron diode, the pulse duration, maximum electron energy, total beam current being 80 ns, 450 keV, and 1 kA, respectively. The results verified the reliability of the above analysis method for energy spectrum, which can avoid intercepting the beam, and at the same time significantly improved the energy resolution. Some calculation and experimental details are discussed in this paper.
The effect of nitrogen gas addition in Ar-based double-layer shielding gas on the impact toughness of welded ultra-ferritic stainless steel during an autogenous gas tungsten arc welding (GTAW) process was investigated. The nitrogen behavior was proposed. The microstructure, mechanical properties, and fracture surface morphology of the weld metals have been evaluated. More equiaxed crystals, refined grain, narrow HAZ width, and increased microhardness were produced with nitrogen addition. Experimental findings indicated that nitrogen diffused into HAZ and dissolved into weld pool. The solute distribution was changed thus bringing significant constitutional supercooling and decreased temperature gradient of weld pool, which contributed to fine microstructure. Impact toughness at room temperature was enhanced from 2J to 9J (welds), 5J–13J (HAZ). Ductile fracture zone was produced about 0.3–0.5 mm thickness distance from the weld surface. A significant increased impact toughness of weld metal was due to the refinement of microstructure and element addition.