We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Few empirical studies have examined the collective impact of and interplay between individual factors on collaborative outcomes during major infectious disease outbreaks and the direct and interactive effects of these factors and their underlying mechanisms. Therefore, this study investigates the effects and underlying mechanisms of emergency preparedness, support and assurance, task difficulty, organizational command, medical treatment, and epidemic prevention and protection on collaborative outcomes during major infectious disease outbreaks.
Methods
A structured questionnaire was distributed to medical personnel with experience in responding to major infectious disease outbreaks. SPSS software was used to perform the statistical analysis. Structural equation modeling was conducted using AMOS 24.0 to analyze the complex relationships among the study variables.
Results
Organizational command, medical treatment, and epidemic prevention and protection had significant and positive impacts on collaborative outcomes. Emergency preparedness and supportive measures positively impacted collaborative outcomes during health crises and were mediated through organizational command, medical treatment, and epidemic prevention and protection.
Conclusions
The results underscore the critical roles of organizational command, medical treatment, and epidemic prevention and protection in achieving positive collaborative outcomes during health crises, with emergency preparedness and supportive measures enhancing these outcomes through the same key factors.
Carbon storage in saline aquifers is a prominent geological method for reducing CO2 emissions. However, salt precipitation within these aquifers can significantly impede CO2 injection efficiency. This study examines the mechanisms of salt precipitation during CO2 injection into fractured matrices using pore-scale numerical simulations informed by microfluidic experiments. The analysis of varying initial salt concentrations and injection rates revealed three distinct precipitation patterns, namely displacement, breakthrough and sealing, which were systematically mapped onto regime diagrams. These patterns arise from the interplay between dewetting and precipitation rates. An increase in reservoir porosity caused a shift in the precipitation pattern from sealing to displacement. By incorporating pore structure geometry parameters, the regime diagrams were adapted to account for varying reservoir porosities. In hydrophobic reservoirs, the precipitation pattern tended to favour displacement, as salt accumulation occurred more in larger pores than in pore throats, thereby reducing the risk of clogging. The numerical results demonstrated that increasing the gas injection rate or reducing the initial salt concentration significantly enhanced CO2 injection performance. Furthermore, identifying reservoirs with high hydrophobicity or large porosity is essential for optimising CO2 injection processes.
Cathepsin B (CTSB) is a cysteine protease that is widely found in eukaryotes and plays a role in insect growth, development, digestion, metamorphosis, and immunity. In the present study, we examined the role of CTSB in response to environmental stresses in Myzus persicae Sulzer (Hemiptera: Aphididae). Six MpCTSB genes, namely MpCTSB-N, MpCTSB-16D1, MpCTSB-3098, MpCTSB-10270, MpCTSB-mp2, and MpCTSB-16, were identified and cloned from M. persicae. The putative proteins encoded by these genes contained three conserved active site residues, i.e. Cys, His, and Asn. A phylogenetic tree analysis revealed that the six MpCTSB proteins of M. persicae were highly homologous to other Hemipteran insects. Real-time polymerase chain reaction revealed that the MpCTSB genes were expressed at different stages of M. persicae and highly expressed in winged adults or first-instar nymphs. The expression of nearly all MpCTSB genes was significantly upregulated under different environmental stresses (38°C, 4°C, and ultraviolet-B). This study shows that MpCTSB plays an important role in the growth and development of M. persicae and its resistance to environmental stress.
The AIMTB rapid test assay is an emerging test, which adopted a fluorescence immunochromatographic assay to measure interferon-γ (IFN-γ) production following stimulation of effector memory T cells in whole blood by mycobacterial proteins. The aim of this article was to explore the ability of AIMTB rapid test assay in detecting Mycobacterium tuberculosis (MTB) infection compared with the widely applied QuantiFERON-TB Gold Plus (QFT-Plus) test among rural doctors in China. In total, 511 participants were included in the survey. The concordance between the QFT-Plus test and the AIMTB rapid test assay was 94.47% with a Cohen’s kappa coefficient (κ) of 0.84 (95% CI, 0.79–0.90). Improved concordance between the two tests was observed in males and in participants with 26 or more years of service as rural doctors. The quantitative values of the QFT-Plus test was higher in individuals with a result of QFT-Plus-/AIMTB+ as compared to those with a result of QFT-Plus-/AIMTB- (p < 0.001). Overall, our study found that there was an excellent consistency between the AIMTB rapid test assay and the QFT-Plus test in a Chinese population. As the AIMTB rapid test assay is fast and easy to operate, it has the potential to improve latent tuberculosis infection testing and treatment at the community level in resource-limited settings.
In 2017, Brosseau & Vlahovska (Phys. Rev. Lett, vol. 119, no. 3, 2017, p. 034501) found that, in a strong electric field, a weakly conductive, low-viscosity droplet immersed in a highly conductive, high-viscosity medium formed a lens shape, and liquid rings continuously detached from its equatorial plane and subsequently broke up into satellite droplets. This fascinating multiphase electrohydrodynamic (EHD) phenomenon is known as droplet equatorial streaming. In this paper, based on the unified lattice Boltzmann method framework proposed by Luo et al. (Phil. Trans. R. Soc. A Math. Phys. Engng Sci, vol. 379, no. 2208, 2021, p. 20200397), a novel lattice Boltzmann (LB) model is constructed for multiphase EHD by coupling the Allen–Cahn type of multiphase LB model and two new LB equations to solve the Poisson equation of the electric field and the conservation equation of the surface charge. Using the proposed LB model, we successfully reproduced, for the first time, the complete process of droplet equatorial streaming, including the continuous ejection and breakup of liquid rings on the equatorial plane. In addition, it is found that, under conditions of high electric field strength or significant electrical conductivity contrast, droplets exhibit fingering equatorial streaming that was unknown before. A power-law relationship is discovered for droplet total charge evolution and a theoretical model is then proposed to describe the droplet radius and height over time. The breakup of liquid rings is found to be dominated by capillary instability, while the breakup of liquid fingers is governed by the end-pinching mechanism. Finally, a phase diagram is constructed for fingering equatorial streaming and ring equatorial streaming, and a criterion equation is established for the phase boundary.
Seed germination is a pivotal period of plant growth and development. This process can be divided into four major stages, swelling absorption, seed coat dehiscence, radicle emergence and radicle elongation. Cupressus gigantea, a tree native to Tibet, China, is characterized by its resistance to stresses such as cold, and drought, and has a high economic and ecological value. Nevertheless, given its unique geographic location, its seeds are difficult to germinate. Therefore, it is crucial to explore the mechanisms involved in seed germination in this species to improve the germination efficiency of its seeds, thereby protecting this high-quality resource. Here, our findings indicate that seed germination was enhanced when exposed to a 6-h/8-h light/dark photoperiod, coupled with a temperature of 20°C. Furthermore, the application of exogenous GA3 (1 mg/ml, about 2.9 mM) stimulated the germination of C. gigantea seeds. Subsequently, proteomics was used to detect changes in protein expression during the four stages of seed germination. We identified 34 differentially expressed proteins (DEPs), including 13 at the radicle pre-emergence stage, and 17 at the radicle elongation stage. These DEPs were classified into eight functional groups, cytoskeletal proteins, energy metabolism, membrane transport, stress response, molecular chaperones, amino acid metabolism, antioxidant system and ABA signalling pathway. Most of them were found to be closely associated with amino acid metabolism. Combined, these findings indicate that, along with temperature and light, exogenous GA3 can increase the germination efficiency of C. gigantea seeds. Our study also offers insights into the changes in protein expression patterns in C. gigantea seeds during germination.
Our previous studies have suggested that spastin, which aggregates on spindle microtubules in oocytes, may promote the assembly of mouse oocyte spindles by cutting microtubules. This action may be related to CRMP5, as knocking down CRMP5 results in reduced spindle microtubule density and maturation defects in oocytes. In this study, we found that, after knocking down CRMP5 in oocytes, spastin distribution shifted from the spindle to the spindle poles and errors in microtubule–kinetochore attachment appeared in oocyte spindles. However, CRMP5 did not interact with the other two microtubule-severing proteins, katanin-like-1 (KATNAL1) and fidgetin-like-1 (FIGNL1), which aggregate at the spindle poles. We speculate that, in oocytes, due to the reduction of spastin distribution on chromosomes after knocking down CRMP5, microtubule–kinetochore errors cannot be corrected through severing, resulting in meiotic division abnormalities and maturation defects in oocytes. This finding provides new insights into the regulatory mechanisms of spastin in oocytes and important opportunities for the study of meiotic division mechanisms.
Dietary antioxidant indices (DAI) may be potentially associated with relative telomere length (RTL) of leucocytes. This study aimed to investigate the relationship between DAI and RTL. A cross-sectional study involving 1656 participants was conducted. A generalised linear regression model and a restricted cubic spline model were used to assess the correlation of DAI and its components with RTL. Generalised linear regression analysis revealed that DAI (β = 0·005, P = 0·002) and the intake of its constituents vitamin C (β = 0·043, P = 0·027), vitamin E (β = 0·088, P < 0·001), Se (β = 0·075, P = 0·003), and Zn (β = 0·075, P = 0·023) were significantly and positively correlated with RTL. Sex-stratified analysis showed that DAI (β = 0·006, P = 0·005) and its constituents vitamin E (β = 0·083, P = 0·012), Se (β = 0·093, P = 0·006), and Zn (β = 0·092, P = 0·034) were significantly and positively correlated with RTL among females. Meanwhile, among males, only vitamin E intake (β = 0·089, P = 0·013) was significantly and positively associated with RTL. Restricted cubic spline analysis revealed linear positive associations between DAI and its constituents’ (vitamin E, Se and Zn) intake and RTL in the total population. Sex-stratified analysis revealed a linear positive correlation between DAI and its constituents’ (vitamin E, Se and Zn) intake and RTL in females. Our study found a significant positive correlation between DAI and RTL, with sex differences.
Supersonic gas jets generated via a conical nozzle are widely applied in the laser wakefield acceleration of electrons. The stability of the gas jet is critical to the electron injection and the reproducibility of the wakefield acceleration. Here we discussed the role of the stilling chamber in a modified converging–diverging nozzle to dissipate the turbulence and to stabilize the gas jets. By the fluid dynamics simulations and the Mach–Zehnder interferometer measurements, the instability originating from the nonlinear turbulence is studied and the mechanism to suppress the instability is proposed. Both the numerical and experimental results prove that the carefully designed nozzle with a stilling chamber is able to reduce the perturbation by more than 10% compared with a simple-conical nozzle.
HIV-1 molecular surveillance provides a new approach to explore transmission risks and targeted interventions. From January to June 2021, 663 newly reported HIV-1 cases were recruited in Zhaotong City, Yunnan Province, China. The distribution characteristics of HIV-1 subtypes and HIV-1 molecular network were analysed. Of 542 successfully subtyped samples, 12 HIV-1 strains were identified. The main strains were CRF08_BC (47.0%, 255/542), CRF01_AE (17.0%, 92/542), CRF07_BC (17.0%, 92/542), URFs (8.7%, 47/542), and CRF85_BC (6.5%, 35/542). CRF08_BC was commonly detected among Zhaotong natives, illiterates, and non-farmers and was mostly detected in Zhaoyang County. CRF01_AE was frequently detected among married and homosexual individuals and mostly detected in Weixin and Zhenxiong counties. Among the 516 pol sequences, 187 (36.2%) were clustered. Zhaotong natives, individuals aged ≥60 years, and illiterate individuals were more likely to be found in the network. Assortativity analysis showed that individuals were more likely to be genetically associated when stratified by age, education level, occupation, and reporting area. The genetic diversity of HIV-1 reflects the complexity of local HIV epidemics. Molecular network analyses revealed the subpopulations to focus on and the characteristics of the risk networks. The results will help optimise local prevention and control strategies.
The low maturation rate of oocytes is an important reason for female infertility and failure of assisted pregnancy. The germinal vesicle breakdown (GVBD) is a landmark event of oocyte maturation. In our previous studies, we found that zona pellucida 3 (ZP3) was strongly concentrated in the nuclear region of germinal vesicle (GV) oocytes and interacted with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) and lamin A to promote GVBD. In the current study, we found that lamin A is mainly concentrated in the nuclear membrane. When ZP3 is knocked down, lamin A will be partially transferred to the nucleus of oocytes. The prelamin A is increased in both the nuclear membrane and nucleus, while phosphorylated lamin A (p-lamin A) is significantly reduced. AIPL1 was also proved to accumulate in the GV region of oocytes, and ZP3 deletion can significantly inhibit the aggregation of AIPL1 in the nuclear region. Similar to ZP3 knockdown, the absence of AIPL1 resulted in a decrease in the occurrence of GVBD, an increase in the amount of prelamin A, and a significant decrease in p-lamin A in oocytes developed in vitro. Finally, we propose the hypothesis that ZP3 can stabilize farnesylated prelamin A on the nuclear membrane of AIPL1, and promote its further processing into mature lamin A, therefore promoting the occurrence of GVBD. This study may be an important supplement for the mechanism of oocyte meiotic resumption and provide new diagnostic targets and treatment clues for infertility patients with oocyte maturation disorder.
Microtubule-severing proteins (MTSPs) play important roles in mitosis and interphase. However, to the best of our knowledge, no previous studies have evaluated the role of MTSPs in female meiosis in mammals. It was found that FIGNL1, a member of MTSPs, was predominantly expressed in mouse oocytes and distributed at the spindle poles during meiosis in the present study. FIGNL1 was co-localized and interacted with γ-tubulin, an important component of the microtubule tissue centre (MTOC). Fignl1 knockdown by specific small interfering RNA caused spindle defects characterized by an abnormal length:width ratio and decreased microtubule density, which consequently led to aberrant chromosome arrangement, oocyte maturation and fertilization obstacles. In conclusion, the present results suggested that FIGNL1 may be an essential factor in oocyte maturation by influencing the meiosis process via the formation of spindles.
We present a family of counterexamples to a question proposed recently by Moretó concerning the character codegrees and the element orders of a finite solvable group.
Coronavirus disease 2019 (COVID-19) is a serious respiratory disease mediated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The worldwide spread of COVID-19 has caused millions of confirmed cases and morbidity, and the crisis has greatly affected global economy and daily life and changed our attitudes towards life. The reproductive system, as a potential target, is at a high risk of SARS-CoV-2 infection, and females are more vulnerable to viral infection compared with males. Therefore, female fertility and associated reproductive health care in the COVID-19 era need more attention. This review summarises the mechanism of SARS-CoV-2 infection in the female reproductive system and discusses the impact of the COVID-19 crisis on female fertility. Studies have proven that COVID-19 might affect female fertility and interfere with assisted reproductive technology procedures. The side effects of vaccines against the virus on ovarian reserve and pregnancy have not yet been well investigated. In the future, the female fertility after SARS-CoV-2 infection and vaccination needs more attention because of the uncertainty of COVID-19.
The provenance and tectonic setting of the Lower–Middle Triassic clastic sediments from the Napo basin, South China, have been examined here using detrital modes, whole-rock geochemistry and detrital zircon U–Pb ages. Field investigations indicate that these sediments consist of fan delta, slope and turbidity fan facies with dominantly southward palaeocurrent directions. Detrital modes and geochemical characteristics of the clastic rocks indicate that they were derived from mixed magmatic arc and Palaeozoic successions in a continental island arc setting, with no significant sediment recycling. The U–Pb age spectra of sandstone detrital zircons from different stratigraphic positions are similar, with one major group (300–230 Ma), two subordinate groups (400–320 Ma and 480–420 Ma, respectively) and two scattered groups (1200–800 Ma and 2000–1700 Ma, respectively). Thus, we consider that the north late Permian – Middle Triassic volcanic rocks and the uplifted Palaeozoic sedimentary/volcanic sequences constituted the predominant sources. The detritus derived from the late Permian Emeishan mafic rocks is subordinate and limited. The pre-Devonian zircons are likely sedimentary-recycled or magmatic-captured instead of directly derived from the early Palaeozoic orogen (e.g. Yunkai massif) and Neoproterozoic Jiangnan orogen because of the topographic barrier of a magmatic arc and carbonate platform. Considering the spatial and temporal distribution characteristics of the volcanic arc and ophiolite, we suggest that the Triassic Napo basin was a fore-arc basin within a continental island arc setting, which developed in response to the northward subduction of the Babu–Cao Bang branch ocean beneath the South China Block.
Sarcopenic obesity is regarded as a risk factor for the progression and development of non-alcoholic fatty liver disease (NAFLD). Since male sex is a risk factor for NAFLD and skeletal muscle mass markedly varies between the sexes, we examined whether sex influences the association between appendicular skeletal muscle mass to visceral fat area ratio (SVR), that is, an index of skeletal muscle mass combined with abdominal obesity, and the histological severity of NAFLD. The SVR was measured by bioelectrical impedance in a cohort of 613 (M/F = 443/170) Chinese middle-aged individuals with biopsy-proven NAFLD. Multivariable logistic regression and subgroup analyses were used to test the association between SVR and the severity of NAFLD (i.e. non-alcoholic steatohepatitis (NASH) or NASH with the presence of any stage of liver fibrosis). NASH was identified by a NAFLD activity score ≥5, with a minimum score of 1 for each of its categories. The presence of fibrosis was classified as having a histological stage ≥1. The SVR was inversely associated with NASH in men (adjusted OR 0·62; 95 % CI 0·42, 0·92, P = 0·017 for NASH, adjusted OR 0·65; 95 % CI 0·43, 0·99, P = 0·043 for NASH with the presence of fibrosis), but not in women (1·47 (95 % CI 0·76, 2·83), P = 0·25 for NASH, and 1·45 (95 % CI 0·74, 2·83), P = 0·28 for NASH with the presence of fibrosis). There was a significant interaction for sex and SVR (Pinteraction = 0·017 for NASH and Pinteraction = 0·033 for NASH with the presence of fibrosis). Our findings show that lower skeletal muscle mass combined with abdominal obesity is strongly associated with the presence of NASH only in men.
Microtubule-severing protein (MTSP) is critical for the survival of both mitotic and postmitotic cells. However, the study of MTSP during meiosis of mammalian oocytes has not been reported. We found that spastin, a member of the MTSP family, was highly expressed in oocytes and aggregated in spindle microtubules. After knocking down spastin by specific siRNA, the spindle microtubule density of meiotic oocytes decreased significantly. When the oocytes were cultured in vitro, the oocytes lacking spastin showed an obvious maturation disorder. Considering the microtubule-severing activity of spastin, we speculate that spastin on spindles may increase the number of microtubule broken ends by severing the microtubules, therefore playing a nucleating role, promoting spindle assembly and ensuring normal meiosis. In addition, we found the colocalization and interaction of collapsin response mediator protein 5 (CRMP5) and spastin in oocytes. CRMP5 can provide structural support and promote microtubule aggregation, creating transportation routes, and can interact with spastin in the microtubule activity of nerve cells (30). Knocking down CRMP5 may lead to spindle abnormalities and developmental disorders in oocytes. Overexpression of spastin may reverse the abnormal phenotype caused by the deletion of CRMP5. In summary, our data support a model in which the interaction between spastin and CRMP5 promotes the assembly of spindle microtubules in oocytes by controlling microtubule dynamics, therefore ensuring normal meiosis.
People with serious mental illness are at great risk of suicide, but little is known about the suicide rates among this population. We aimed to quantify the suicide rates among people with serious mental illness (bipolar disorder, major depression, or schizophrenia).
Methods
PubMed and Web of Science were searched to identify studies published from 1 January 1975 to 10 December 2020. We assessed English-language studies for the suicide rates among people with serious mental illness. Random-effects meta-analysis was used. Changes in follow-up time and the suicide rates were presented by a locally weighted scatter-plot smoothing (LOESS) curve. Suicide rate ratio was estimated for assessments of difference in suicide rate by sex.
Results
Of 5014 identified studies, 41 were included in this analysis. The pooled suicide rate was 312.8 per 100 000 person-years (95% CI 230.3–406.8). Europe was reported to have the highest pooled suicide rate of 335.2 per 100 000 person-years (95% CI 261.5–417.6). Major depression had the highest suicide rate of 534.3 per 100 000 person-years (95% CI 30.4–1448.7). There is a downward trend in suicide rate estimates over follow-up time. Excess risk of suicide in males was found [1.90 (95% CI 1.60–2.25)]. The most common suicide method was poisoning [21.9 per 100 000 person-years (95% CI 3.7–50.4)].
Conclusions
The suicide rates among people with serious mental illness were high, highlighting the requirements for increasing psychological assessment and monitoring. Further study should focus on region and age differences in suicide among this population.
Triiodide perovskites CsPbI3, CsSnI3, and FAPbI3 (where FA is formamidinium) are highly promising materials for a range of optoelectronic applications in energy conversion. However, they are thermodynamically unstable at room temperature, preferring to form low-temperature (low-T) non-perovskite phases with one-dimensional anisotropic crystal structures. While such thermodynamic behavior represents a major obstacle toward realizing high-performance devices based on their high-temperature (high-T) perovskite phases, the underlying phase transition dynamics are still not well understood. Here we use in situ optical micro-spectroscopy to quantitatively study the transition from the low-T to high-T phases in individual CsSnI3 and FAPbI3 nanowires. We reveal a large blueshift in the photoluminescence (PL) peak (~38 meV) at the low-T/high-T two-phase interface of partially transitioned FAPbI3 wire, which may result from the lattice distortion at the phase boundary. Compared to the experimentally derived activation energy of CsSnI3 (~1.93 eV), the activation energy of FAPbI3 is relatively small (~0.84 eV), indicating a lower kinetic energy barrier when transitioning from a face-sharing octahedral configuration to a corner-sharing one. Further, the phase propagation rate in CsSnI3 is observed to be relatively high, which may be attributed to a high concentration of Sn vacancies. Our results could not only facilitate a deeper understanding of phase transition dynamics in halide perovskites with anisotropic crystal structures, but also enable controllable manipulation of optoelectronic properties via local phase engineering.