We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a systematic study on the effects of small aspect ratios $\varGamma$ on heat transport in liquid metal convection with a Prandtl number of $Pr=0.029$. The study covers $1/20\le \varGamma \le 1$ experimentally and $1/50\le \varGamma \le 1$ numerically, and a Rayleigh number $Ra$ range of $4\times 10^3 \le Ra \le 7\times 10^{9}$. It is found experimentally that the local effective heat transport scaling exponent $\gamma$ changes with both $Ra$ and $\varGamma$, attaining a $\varGamma$-dependent maximum value before transition-to-turbulence and approaches $\gamma =0.25$ in the turbulence state as $Ra$ increases. Just above the onset of convection, Shishkina (Phys. Rev. Fluids, vol 6, 2021, 090502) derived a length scale $\ell =H/(1+1.49\varGamma ^{-2})^{1/3}$. Our numerical study shows $Ra_{\ell }$, i.e. $Ra$ based on $\ell$, serves as a proper control parameter for heat transport above the onset with $Nu-1=0.018(1+0.34/\varGamma ^2)(Ra/Ra_{c,\varGamma }-1)$. Here $Ra_{c,\varGamma }$ represents the $\varGamma$-dependent critical $Ra$ for the onset of convection and $Nu$ is the Nusselt number. In the turbulent state, for a general scaling law of $Nu-1\sim Ra^\alpha$, we propose a length scale $\ell = H/(1+1.49\varGamma ^{-2})^{1/[3(1-\alpha )]}$. In the case of turbulent liquid metal convection with $\alpha =1/4$, our measurement shows that the heat transport will become weakly dependent on $\varGamma$ with $Ra_{\ell }\equiv Ra/(1+1.49\varGamma ^{-2})^{4/3} \ge 7\times 10^5$. Finally, once the flow becomes time-dependent, the growth rate of $Nu$ with $Ra$ declines compared with the linear growth rate in the convection state. A hysteresis is observed in a $\varGamma =1/3$ cell when the flow becomes time-dependent. Measurements of the large-scale circulation suggest the hysteresis is caused by the system switching from a single-roll-mode to a double-roll-mode in an oscillation state.
Both impulsivity and compulsivity have been identified as risk factors for problematic use of the internet (PUI). Yet little is known about the relationship between impulsivity, compulsivity and individual PUI symptoms, limiting a more precise understanding of mechanisms underlying PUI.
Aims
The current study is the first to use network analysis to (a) examine the unique association among impulsivity, compulsivity and PUI symptoms, and (b) identify the most influential drivers in relation to the PUI symptom community.
Method
We estimated a Gaussian graphical model consisting of five facets of impulsivity, compulsivity and individual PUI symptoms among 370 Australian adults (51.1% female, mean age = 29.8, s.d. = 11.1). Network structure and bridge expected influence were examined to elucidate differential associations among impulsivity, compulsivity and PUI symptoms, as well as identify influential nodes bridging impulsivity, compulsivity and PUI symptoms.
Results
Results revealed that four facets of impulsivity (i.e. negative urgency, positive urgency, lack of premeditation and lack of perseverance) and compulsivity were related to different PUI symptoms. Further, compulsivity and negative urgency were the most influential nodes in relation to the PUI symptom community due to their highest bridge expected influence.
Conclusions
The current findings delineate distinct relationships across impulsivity, compulsivity and PUI, which offer insights into potential mechanistic pathways and targets for future interventions in this space. To realise this potential, future studies are needed to replicate the identified network structure in different populations and determine the directionality of the relationships among impulsivity, compulsivity and PUI symptoms.
Using thermal convection in liquid metal, we show that strong spatial confinement not only delays the onset Rayleigh number $Ra_c$ of Rayleigh–Bénard instability but also postpones the various flow-state transitions. The $Ra_c$ and the transition to fully developed turbulence Rayleigh number $Ra_f$ depend on the aspect ratio $\varGamma$ with $Ra_c\sim \varGamma ^{-4.05}$ and $Ra_f\sim \varGamma ^{-3.01}$, implying that the stabilization effects caused by the strong spatial confinement are weaker on the transition to fully developed turbulence when compared with that on the onset. When the flow state is characterized by the supercritical Rayleigh number $Ra/Ra_{c}$ ($Ra$ is the Rayleigh number), our study shows that the transition to fully developed turbulence in strongly confined geometries is advanced. For example, while the flow becomes fully developed turbulence at $Ra\approx 200Ra_c$ in a $\varGamma =1$ cell, the same transition in a $\varGamma =1/20$ cell only requires $Ra\approx 3Ra_c$. Direct numerical simulation and linear stability analysis show that in the strongly confined regime, multiple vertically stacked roll structures appear just above the onset of convection. With an increase of the driving strength, the flow switches between different-roll states stochastically, resulting in no well-defined large-scale coherent flow. Owing to this new mechanism that only exists in systems with $\varGamma <1$, the flow becomes turbulent in a much earlier stage. These findings shed new light on how turbulence is generated in strongly confined geometries.
Coupling of clearance joint and harsh aerodynamic heating environment is an inevitable nonlinear factor in folding mechanism of the fin of high-speed aircrafts that remarkably modifies natural frequencies and modes of vibration from the initial design state. However, accurately predicting dynamic properties of deployable fin with full consideration of these effects is not common industry practice. A practical semi-analytical model based on Hertz contact theory and ESDU-78035 model is proposed in this study to investigate high-temperature connection stiffness of local hinged–locked mechanisms. Material property degradation and clearance variation caused by thermal expansion are comprehensively considered and quantified in this model. Vibration characteristics of the assembled deployable fin are then solved using finite element method (FEM). The real-time evolutionary process of thermal mode of the fin is discussed. And natural frequencies of fixed-value and time-varying connection stiffness are compared. The simulation results of this study demonstrate that the relative error of structure temperature between the sequential approach and fully coupled simulations is less than 6.98%. The connection stiffness (slope of the load-displacement curve) of the folding mechanism under high temperature conditions decreases by 3.52%, and the variation is mainly caused by the degradation of the elastic modulus of the material, while the clearance change due to the thermal expansion has no significant effect on the slope. The natural frequency of the deployable fin exhibits an inverse correlation with the temperature change trend, and the first three frequencies decrease by 1.67, 7.75, and 16.28 Hz compared to the initial value, respectively.
A new approach to target development for laboratory astrophysics experiments at high-power laser facilities is presented. With the dawn of high-power lasers, laboratory astrophysics has emerged as a field, bringing insight into physical processes in astrophysical objects, such as the formation of stars. An important factor for success in these experiments is targetry. To date, targets have mainly relied on expensive and challenging microfabrication methods. The design presented incorporates replaceable machined parts that assemble into a structure that defines the experimental geometry. This can make targets cheaper and faster to manufacture, while maintaining robustness and reproducibility. The platform is intended for experiments on plasma flows, but it is flexible and may be adapted to the constraints of other experimental setups. Examples of targets used in experimental campaigns are shown, including a design for insertion in a high magnetic field coil. Experimental results are included, demonstrating the performance of the targets.
We present an experimental study of Rayleigh–Bénard convection using liquid metal alloy gallium-indium-tin as the working fluid with a Prandtl number of $Pr=0.029$. The flow state and the heat transport were measured in a Rayleigh number range of $1.2\times 10^{4} \le Ra \le 1.3\times 10^{7}$. The temperature fluctuation at the cell centre is used as a proxy for the flow state. It is found that, as $Ra$ increases from the lower end of the parameter range, the flow evolves from a convection state to an oscillation state, a chaotic state and finally a turbulent state for $Ra>10^5$. The study suggests that the large-scale circulation in the turbulent state is a residual of the cell structure near the onset of convection, which is in contrast with the case of $Pr\sim 1$, where the cell structure is transiently replaced by high order flow modes before the emergence of the large-scale circulation in the turbulent state. The evolution of the flow state is also reflected by the heat transport characterised by the Nusselt number $Nu$ and the probability density function (p.d.f.) of the temperature fluctuation at the cell centre. It is found that the effective local heat transport scaling exponent $\gamma$, i.e. $Nu\sim Ra^{\gamma }$, changes continuously from $\gamma =0.49$ at $Ra\sim 10^4$ to $\gamma =0.25$ for $Ra>10^6$. Meanwhile, the p.d.f. at the cell centre gradually evolves from a Gaussian-like shape before the transition to turbulence to an exponential-like shape in the turbulent state. For $Ra>10^6$, the flow shows self-similar behaviour, which is revealed by the universal shape of the p.d.f. of the temperature fluctuation at the cell centre and a $Nu=0.19Ra^{0.25}$ scaling for the heat transport.
Both prosthetic and robotic research communities have tended to focus on hand/gripper development. However, the wrist unit could enable higher mobility of the end effector and thus more efficient and dexterous manipulation. The current state of the art in both prosthetic and robotic wrists is reviewed systematically, mainly concerning their kinematic structures and resultant capabilities. Further, by considering the biomechanical advantages of the human wrist, an evaluation including the mobility, stability, output capability, load capacity and flexibility of the current artificial wrists is conducted. With the pentagonal capability radar charts, the major limitations and challenges in the current development of artificial wrists are derived. This paper hence provides some useful insights for better robotic wrist design and development.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
The provenance and tectonic setting of the Lower–Middle Triassic clastic sediments from the Napo basin, South China, have been examined here using detrital modes, whole-rock geochemistry and detrital zircon U–Pb ages. Field investigations indicate that these sediments consist of fan delta, slope and turbidity fan facies with dominantly southward palaeocurrent directions. Detrital modes and geochemical characteristics of the clastic rocks indicate that they were derived from mixed magmatic arc and Palaeozoic successions in a continental island arc setting, with no significant sediment recycling. The U–Pb age spectra of sandstone detrital zircons from different stratigraphic positions are similar, with one major group (300–230 Ma), two subordinate groups (400–320 Ma and 480–420 Ma, respectively) and two scattered groups (1200–800 Ma and 2000–1700 Ma, respectively). Thus, we consider that the north late Permian – Middle Triassic volcanic rocks and the uplifted Palaeozoic sedimentary/volcanic sequences constituted the predominant sources. The detritus derived from the late Permian Emeishan mafic rocks is subordinate and limited. The pre-Devonian zircons are likely sedimentary-recycled or magmatic-captured instead of directly derived from the early Palaeozoic orogen (e.g. Yunkai massif) and Neoproterozoic Jiangnan orogen because of the topographic barrier of a magmatic arc and carbonate platform. Considering the spatial and temporal distribution characteristics of the volcanic arc and ophiolite, we suggest that the Triassic Napo basin was a fore-arc basin within a continental island arc setting, which developed in response to the northward subduction of the Babu–Cao Bang branch ocean beneath the South China Block.
We report on the design and first results from experiments looking at the formation of radiative shocks on the Shenguang-II (SG-II) laser at the Shanghai Institute of Optics and Fine Mechanics in China. Laser-heating of a two-layer CH/CH–Br foil drives a $\sim 40$ km/s shock inside a gas cell filled with argon at an initial pressure of 1 bar. The use of gas-cell targets with large (several millimetres) lateral and axial extent allows the shock to propagate freely without any wall interactions, and permits a large field of view to image single and colliding counter-propagating shocks with time-resolved, point-projection X-ray backlighting ($\sim 20$ μm source size, 4.3 keV photon energy). Single shocks were imaged up to 100 ns after the onset of the laser drive, allowing to probe the growth of spatial nonuniformities in the shock apex. These results are compared with experiments looking at counter-propagating shocks, showing a symmetric drive that leads to a collision and stagnation from $\sim 40$ ns onward. We present a preliminary comparison with numerical simulations with the radiation hydrodynamics code ARWEN, which provides expected plasma parameters for the design of future experiments in this facility.
The X-ray emissions in the interaction of 3–6 MeV Xe23+ ions into thick solid In target are measured. The projectile-to-target and target Lα/Lβ X-ray production intensity ratios are observed to strongly depend on the projectile energy. The dependence deviates from Coulomb ionization predictions, which implies the important roles of coupling between subshells and the activation of 4fσ rotational couplings for projectile energy larger than 5 MeV.
Fe–6.5 Si–0.05 B alloy was used in the study to investigate the texture evolution and magnetic property of the ferromagnetic crystal under an axial high magnetic field during bulk solidification. Optical microscopy (OM) and X-ray diffraction (XRD) were applied to analyze the microstructures and texture evolution of the alloy solidified under different magnetic field intensities. The result shows that with an increase in the magnetic field intensity from 0 to 2 T, the texture gradually changes from random orientation to {100} 〈120〉, eventually becoming a mixture of cube and Goss texture. The alloys treated at 1 and 2 T showed magnetic anisotropic behavior, while the alloy treated at 0 T showed magnetic isotropic behavior. The change in magnetic property comes from the evolution of α-Fe crystal orientation. Furthermore, a method for controlling the crystallization process and crystallographic orientation by adjusting the magnetic field intensity was proposed.
The association between gestational weight gain (GWG) and exclusive breast-feeding (EBF) practices remains unclear. The present study evaluated the association between GWG and EBF in the first 6 months postpartum among primiparas in rural China.
Design
The study population was drawn from a previous randomized controlled trial, and the relevant data were obtained from an electronic, population-based perinatal system and a monitoring system for child health care. GWG was categorized according to the guidelines of the Institute of Medicine.
Setting
Five rural counties in Hebei Province, China.
Participants
A total of 8449 primiparas.
Results
Of the women, 58·7 % breast-fed exclusively for the first 6 months postpartum. Overweight women who gained either more or less weight than the recommended GWG tended to experience failure of EBF (OR=0·49; 95 % CI 0·34, 0·70; P<0·001 and OR=0·79; 95 % CI 0·63, 0·99; P=0·048, respectively). The same results were also observed among obese women; the OR for lower and greater weight gain were 0·28 (95 % CI 0·08, 0·94; P=0·04) and 0·55 (95 % CI 0·32, 0·95; P=0·03), respectively.
Conclusions
GWG that is below or above the Institute of Medicine recommendations is associated with EBF behaviour for the first 6 months postpartum in overweight and obese primiparas in rural China.
Previous studies have inferred a strong genetic component in schizophrenia. However, the genetic variants involved in the susceptibility to schizophrenia remain unclear.
Aims
To detect potential gene pathways and networks associated with schizophrenia, and to explore the relationship between common and rare variants in these pathways and abnormal white matter integrity in schizophrenia.
Method
The analysis included 100 first-episode treatment-naïve patients with schizophrenia and 140 healthy controls. A network-based analysis was carried out on the data collected from the Psychiatric Genomics Consortium Phase I (PGC-I). Based on our genome-wide association study and whole-exome sequencing data-sets, we performed a gene-set analysis to detect associations between the combining effects of common and rare genetic variants and abnormal white matter integrity in schizophrenia.
Results
Patients had significantly reduced functional anisotropy in the left and right anterior cingulate cortex, left and right precuneus and extra-nuclear (t = 4.61–5.10, PFDR < 0.01), compared with controls. Generated from co-expression network analysis of the PGC-1 summary statistics of schizophrenia, a subnetwork of 207 genes associated with schizophrenia was identified (P < 0.01), and 176 genes were co-expressed in four gene modules. Functional enrichment analysis for genes in each module revealed that the yellow module was enriched with highly co-expressed, innate immune response genes. Furthermore, rare variants of enriched genes in the yellow module were associated with reduced functional anisotropy in the left anterior cingulate cortex (P = 0.006; Padjusted = 0.024) in patients only.
Conclusions
The pathogenesis of schizophrenia may be substantially influenced by genes involved in the immune system, via both pathway and network.
In this paper, we review the status of the multifunctional experimental platform at the National Laboratory of High Power Laser and Physics (NLHPLP). The platform, including the SG-II laser facility, SG-II 9th beam, SG-II upgrade (SG-II UP) facility, and SG-II 5 PW facility, is operational and available for interested scientists studying inertial confinement fusion (ICF) and a broad range of high-energy-density physics. These facilities can provide important experimental capabilities by combining different pulse widths of nanosecond, picosecond, and femtosecond scales. In addition, the SG-II UP facility, consisting of a single petawatt system and an eight-beam nanosecond system, is introduced including several laser technologies that have been developed to ensure the performance of the facility. Recent developments of the SG-II 5 PW facility are also presented.
The structure and function of grassland ecosystems can be altered by a changing climate, including higher temperature and elevated atmospheric CO2 concentration. Previous studies suggest that there is no consistent trend in seed germination and seedling recruitment as affected by these conditions. We collected seeds of two native and two invasive species over 6 years from a field study with elevated CO2 (600 p.p.m.) and temperature (1.5/3.0°C day/night) on the mixed-grass prairie of Wyoming, USA. Seed fill, viability and mass were evaluated and germination tests were conducted under alternating temperatures in growth chambers. Thermal time requirements to reach 50% germination (θ50) and base temperatures (Tb) for germination were determined using thermal time models. Climate change conditions had limited effects on seed fill, viability and mass. The combination of CO2 enrichment and warming increased germination of Bouteloua gracilis. Centaurea diffusa and Linaria dalmatica, two invasive species in this study, had the lowest θ50 and Tb required for germination among all the species studied. Although final germination percentages of these invasive species were not affected by treatments, previous studies reported increased seed production under future climate conditions, indicating that they could be more invasive at the regeneration stage in the future. We conclude that projected future temperature increases will have little effect on seed reproductive traits of native species. In addition, the distribution and abundance of B. gracilis and invasive species may be favoured by global climate change due to enhanced germination or seed production traits caused by elevated parental CO2 and temperature conditions.
In high power laser facility for inertial confinement fusion research, final optics assembly (FOA) plays a critical role in the frequency conversion, beam focusing, color separation, beam sampling and debris shielding. The design and performance of FOA in SG-II Upgrade laser facility are mainly introduced here. Due to the limited space and short focal length, a coaxial aspheric wedged focus lens is designed and applied in the FOA configuration. Then the ghost image analysis, the focus characteristic analysis, the B integral control design and the optomechanical design are carried out in the FOA design phase. In order to ensure the FOA performance, two key technologies are developed including measurement and adjustment technique of the wedged focus lens and the stray light management technique based on ground glass. Experimental results show that the design specifications including laser fluence, frequency conversion efficiency and perforation efficiency of the focus spot have been achieved, which meet the requirements of physical experiments well.
The Shen-Guang II Upgrade (SG-II-U) laser facility consists of eight high-power nanosecond laser beams and one short-pulse picosecond petawatt laser. It is designed for the study of inertial confinement fusion (ICF), especially for conducting fast ignition (FI) research in China and other basic science experiments. To perform FI successfully with hohlraum targets containing a golden cone, the long-pulse beam and cylindrical hohlraum as well as the short-pulse beam and cone target alignment must satisfy tight specifications (30 and $20~\unicode[STIX]{x03BC}\text{m}$ rms for each case). To explore new ICF ignition targets with six laser entrance holes (LEHs), a rotation sensor was adapted to meet the requirements of a three-dimensional target and correct beam alignment. In this paper, the strategy for aligning the nanosecond beam based on target alignment sensor (TAS) is introduced and improved to meet requirements of the picosecond lasers and the new six LEHs hohlraum targets in the SG-II-U facility. The expected performance of the alignment system is presented, and the alignment error is also discussed.
This paper reports the measurement of the energy loss of protons at the energy of 100 keV penetrating a partially ionized hydrogen plasma. The plasma of ne ≈ 1015–16 cm−3; Te ≈ 1–2 eV and lifetime of about 8 µs is created by the hydrogen gas discharge. The experimental results show an increase of a factor of 2.8 in the energy loss, which are in good agreement with the Bethe, Standard Stopping Model, Li–Petrasso and Vlasov models’ predictions within the error limit. The Bethe–Bloch Coulomb logarithm term is found to increase by a factor of 4.0 for free electrons as compared with the situation where bound electrons prevail. The potential application of protons energy loss for diagnosing the electron density in plasma is proposed too.
Our previous study showed that smoke derived from alfalfa (Medicago sativa) caused different germination responses compared with that from prairie hay (Festuca hallii) and wheat straw (Triticum aestivum), but the mechanism remained unclear. In this study, we used Salad Bowl lettuce (Lactuca sativa) as a quick bioassay to trace the active compounds in each of these three smoke solutions. Column chromatography and high performance liquid chromatography (HPLC) were used to separate and identify active fractions. Seeds of four species from Fescue Prairie were primed for 24 h at room temperature in darkness using serial dilutions of separated active fractions, as well as karrikinolide (KAR1). After priming, seeds were dried at room temperature in darkness for 7 days and subsequently incubated at 10/0°C or 25/15°C in 12 h light–12 h dark or 24 h darkness for 49 days. KAR1 was in the smoke made from prairie hay, and wheat straw, but was absent in alfalfa smoke. Priming in KAR1 solutions increased germination of three native species. Priming in highly concentrated KAR1 reduced radicle length of Cirsium arvense, the only non-native species. Even though KAR1 has the potential to enhance regeneration of native species in the Fescue Prairie, KAR1 is not universally present in smoke derived from different plant materials. Unknown compound(s) in smoke derived from legumes remain to be identified.