We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Interrupted aortic arch is an uncommon cardiac anomaly characterised by a lack of continuity between the ascending and descending aorta. The presence of interrupted aortic arch in adults is extremely rare, and there is limited documentation of such cases in the literature. In this article, we present a unique case of interrupted aortic arch in an adult diagnosed through angiography. This case falls under the anatomical classification of type B interruption, although the blood supply to the left subclavian artery originates from the ascending aorta. Its haemodynamic characteristics are completely different from those of the classical type B interruption.
Turbulent emulsions are ubiquitous in chemical engineering, food processing, pharmaceuticals and other fields. However, our experimental understanding of this area remains limited due to the multiscale nature of turbulent flow and the presence of extensive interfaces, which pose significant challenges to optical measurements. In this study, we address these challenges by precisely matching the refractive indices of the continuous and dispersed phases, enabling us to measure local velocity information at high volume fractions. The emulsion is generated in a turbulent Taylor–Couette flow, with velocity measured at two radial locations: near the inner cylinder (boundary layer) and in the middle gap (bulk region). Near the inner cylinder, the presence of droplets suppresses the emission of angular velocity plumes, which reduces the mean azimuthal velocity and its root mean squared fluctuation. The former effect leads to a higher angular velocity gradient in the boundary layer, resulting in greater global drag on the system. In the bulk region, although droplets suppress turbulence fluctuations, they enhance the cross-correlation between azimuthal and radial velocities, leaving the angular velocity flux contributed by the turbulent flow nearly unchanged. In both locations, droplets suppress turbulence at scales larger than the average droplet diameter and increase the intermittency of velocity increments. However, the effects of the droplets are more pronounced near the inner cylinder than in the bulk, likely because droplets fragment in the boundary layer but are less prone to break up in the bulk. Our study provides experimental insights into how dispersed droplets modulate global drag, coherent structures and the multiscale characteristics of turbulent flow.
This paper presents a millimeter-wave end-fire dual-polarized (DP) array antenna with symmetrical radiation patterns and high isolation. The DP radiation element is formed by integrating a quasi-Yagi antenna (providing horizontal polarization) into a pyramidal horn antenna (providing vertical polarization), resulting in a DP radiation element with a symmetrical radiation aperture. To efficiently feed the DP element while maintaining high isolation, a mode-composite full-corporate-feed network is employed, comprising substrate-integrated waveguide supporting the TE10 mode and substrate-integrated coaxial line supporting the TEM mode. This design eliminates the need for additional transition structures, achieving excellent mode isolation and a reduced substrate layer number. A 1 × 4-element DP array prototype operating at 26.5–29.5 GHz using low temperature co-fired ceramic technology was designed, fabricated, and measured. The test results indicate that the prototype achieves an average gain exceeding 10 dBi for both polarizations within the operating band. Thanks to the symmetrical DP radiation element and mode-composite full-corporate-feed network, symmetrical radiation patterns for both polarizations are observed in both the horizontal and vertical planes, along with a high cross-polarization discrimination of 22 dB and polarization port isolation of 35 dB.
Compulsive cleaning is a characteristic symptom of a particular subtype of obsessive–compulsive disorder (OCD) and is often accompanied by intense disgust. While overgeneralization of threat is a key factor in the development of obsessive–compulsive symptoms, previous studies have primarily focused on fear generalization and have rarely examined disgust generalization. A systematic determination of the behavioral and neural mechanisms underlying disgust generalization in individuals with contamination concern is crucial for enhancing our understanding of OCD.
Method
In this study, we recruited 27 individuals with high contamination concerns and 30 individuals with low contamination concerns. Both groups performed a disgust generalization task while undergoing functional magnetic resonance imaging (fMRI).
Results
The results revealed that individuals with high contamination concern had higher disgust expectancy scores for the generalization stimulus GS4 (the stimulus most similar to CS+) and exhibited higher levels of activation in the left insula and left putamen. Moreover, the activation of the left insula and putamen were positively correlated with a questionnaire core of the ratings of disgust and also positively correlated with the expectancy rating of CS+ during the generalization stage.
Conclusion
Hyperactivation of the insula and putamen during disgust generalization neutrally mediates the higher degree of disgust generalization in subclinical OCD individuals. This study indicates that altered disgust generalization plays an important role in individuals with high contamination concerns and provides evidence of the neural mechanisms involved. These insights may serve as a basis for further exploration of the pathogenesis of OCD in the future.
The presence of dispersed-phase droplets can result in a notable increase in a system's drag. However, our understanding of the mechanism underlying this phenomenon remains limited. In this study, we use three-dimensional direct numerical simulations with a modified multi-marker volume-of-fluid method to investigate liquid–liquid two-phase turbulence in a Taylor–Couette geometry. The dispersed phase has the same density and viscosity as the continuous phase. The Reynolds number $Re\equiv r_i\omega _i d/\nu$ is fixed at 5200, the volume fraction of the dispersed phase is up to $40\,\%$, and the Weber number $We\equiv \rho u^2_\tau d/\sigma$ is approximately 8. It is found that the increase in the system's drag originates from the contribution of interfacial tension. Specifically, droplets experience significant deformation and stretching in the streamwise direction due to shear near the inner cylinder. Consequently, the rear end of the droplets lags behind the fore head. This causes opposing interfacial tension effects on the fore head and rear end of the droplets. For the fore head of the droplets, the effect of interfacial tension appears to act against the flow direction. For the rear end, the effect appears to act in the flow direction. The increase in the system's drag is attributed primarily to the effect of interfacial tension on the fore head of the droplets which leads to the hindering effect of the droplets on the surrounding continuous phase. This hindering effect disrupts the formation of high-speed streaks, favouring the formation of low-speed ones, which are generally associated with higher viscous stress and drag of the system. This study provides new insights into the mechanism of drag enhancement reported in our previous experiments.
Foodborne diseases are ongoing and significant public health concerns. This study analysed data obtained from the Foodborne Outbreaks Surveillance System of Wenzhou to comprehensively summarise the characteristics of foodborne outbreaks from 2012 to 2022. A total of 198 outbreaks were reported, resulting in 2,216 cases, 208 hospitalisations, and eight deaths over 11 years. The findings suggested that foodborne outbreaks were more prevalent in the third quarter, with most cases occurring in households (30.8%). Outbreaks were primarily associated with aquatic products (17.7%) as sources of contamination. The primary transmission pathways were accidental ingestion (20.2%) and multi-pathway transmission (12.1%). Microbiological aetiologies (46.0%), including Vibrio parahaemolyticus, Salmonella ssp., and Staphylococcus aureus, were identified as the main causes of foodborne outbreaks. Furthermore, mushroom toxins (75.0%), poisonous animals (12.5%), and poisonous plants (12.5%) were responsible for deaths from accidental ingestion. This study identified crucial settings and aetiologies that require the attention of both individuals and governments, thereby enabling the development of effective preventive measures to mitigate foodborne outbreaks, particularly in coastal cities.
Preoperative pneumonia in children with CHD may lead to longer stays in the ICU after surgery. However, research on the associated risk factors is limited. This study aims to evaluate the pre-, intra-, and postoperative risk factors contributing to extended ICU stays in these children.
Methods:
This retrospective cohort study collected data from 496 children with CHD complicated by preoperative pneumonia who underwent cardiac surgery following medical treatment at a single centre from 2017 to 2022. We compared the clinical outcomes of patients with varying ICU stays and utilised multivariate logistic regression analysis and multiple linear regression analyses to evaluate the risk factors for prolonged ICU stays.
Results:
The median ICU stay for the 496 children was 7 days. Bacterial infection, severe pneumonia, and Risk Adjustment for Congenital Heart Surgery-1 were independent risk factors for prolonged ICU stays following cardiac surgery (P < 0.05).
Conclusion:
CHD complicated by pneumonia presents a significant treatment challenge. Better identification of the risk factors associated with long-term postoperative ICU stays in these children, along with timely diagnosis and treatment of respiratory infections in high-risk populations, can effectively reduce ICU stays and improve resource utilisation.
We present a systematic study on the effects of small aspect ratios $\varGamma$ on heat transport in liquid metal convection with a Prandtl number of $Pr=0.029$. The study covers $1/20\le \varGamma \le 1$ experimentally and $1/50\le \varGamma \le 1$ numerically, and a Rayleigh number $Ra$ range of $4\times 10^3 \le Ra \le 7\times 10^{9}$. It is found experimentally that the local effective heat transport scaling exponent $\gamma$ changes with both $Ra$ and $\varGamma$, attaining a $\varGamma$-dependent maximum value before transition-to-turbulence and approaches $\gamma =0.25$ in the turbulence state as $Ra$ increases. Just above the onset of convection, Shishkina (Phys. Rev. Fluids, vol 6, 2021, 090502) derived a length scale $\ell =H/(1+1.49\varGamma ^{-2})^{1/3}$. Our numerical study shows $Ra_{\ell }$, i.e. $Ra$ based on $\ell$, serves as a proper control parameter for heat transport above the onset with $Nu-1=0.018(1+0.34/\varGamma ^2)(Ra/Ra_{c,\varGamma }-1)$. Here $Ra_{c,\varGamma }$ represents the $\varGamma$-dependent critical $Ra$ for the onset of convection and $Nu$ is the Nusselt number. In the turbulent state, for a general scaling law of $Nu-1\sim Ra^\alpha$, we propose a length scale $\ell = H/(1+1.49\varGamma ^{-2})^{1/[3(1-\alpha )]}$. In the case of turbulent liquid metal convection with $\alpha =1/4$, our measurement shows that the heat transport will become weakly dependent on $\varGamma$ with $Ra_{\ell }\equiv Ra/(1+1.49\varGamma ^{-2})^{4/3} \ge 7\times 10^5$. Finally, once the flow becomes time-dependent, the growth rate of $Nu$ with $Ra$ declines compared with the linear growth rate in the convection state. A hysteresis is observed in a $\varGamma =1/3$ cell when the flow becomes time-dependent. Measurements of the large-scale circulation suggest the hysteresis is caused by the system switching from a single-roll-mode to a double-roll-mode in an oscillation state.
Achieving optimal nutritional status in patients with penetrating Crohn’s disease is crucial in preparing for surgical resection. However, there is a dearth of literature comparing the efficacy of total parenteral nutrition (TPN) v. exclusive enteral nutrition (EEN) in optimising postoperative outcomes. Hence, we conducted a case-matched study to assess the impact of preoperative EEN v. TPN on the incidence of postoperative adverse outcomes, encompassing overall postoperative morbidity and stoma formation, among penetrating Crohn’s disease patients undergoing bowel surgery. From 1 December 2012 to 1 December 2021, a retrospective study was conducted at a tertiary centre to enrol consecutive patients with penetrating Crohn’s disease who underwent surgical resection. Propensity score matching was utilised to compare the incidence of postoperative adverse outcomes. Furthermore, univariate and multivariate logistic regression analyses were conducted to identify the risk factors associated with adverse outcomes. The study included 510 patients meeting the criteria. Among them, 101 patients in the TPN group showed significant improvements in laboratory indicators at the time of surgery compared with pre-optimisation levels. After matching, TPN increased the occurrence of postoperative adverse outcomes (92·2 % v. 64·1 %, P = 0·001) when compared with the EEN group. In the multivariate analysis, TPN showed a significantly higher OR for adverse outcomes than EEN (OR = 4·241; 95 % CI 1·567–11·478; P = 0·004). The study revealed that penetrating Crohn’s disease patients who were able to fulfil their nutritional requirements through EEN exhibited superior nutritional and surgical outcomes in comparison with those who received TPN.
The presence of a dispersed phase can significantly modulate the drag in turbulent systems. We derived a conserved quantity that characterizes the radial transport of azimuthal momentum in the fluid–fluid two-phase Taylor–Couette turbulence. This quantity consists of contributions from advection, diffusion and two-phase interface, which are closely related to density, viscosity and interfacial tension, respectively. We found from interface-resolved direct numerical simulations that the presence of the two-phase interface consistently produces a positive contribution to the momentum transport and leads to drag enhancement, while decreasing the density and viscosity ratios of the dispersed phase to the continuous phase reduces the contribution of local advection and diffusion terms to the momentum transport, respectively, resulting in drag reduction. Therefore, we concluded that the decreased density ratio and the decreased viscosity ratio work together to compete with the presence of a two-phase interface for achieving drag modulation in fluid–fluid two-phase turbulence.
Using thermal convection in liquid metal, we show that strong spatial confinement not only delays the onset Rayleigh number $Ra_c$ of Rayleigh–Bénard instability but also postpones the various flow-state transitions. The $Ra_c$ and the transition to fully developed turbulence Rayleigh number $Ra_f$ depend on the aspect ratio $\varGamma$ with $Ra_c\sim \varGamma ^{-4.05}$ and $Ra_f\sim \varGamma ^{-3.01}$, implying that the stabilization effects caused by the strong spatial confinement are weaker on the transition to fully developed turbulence when compared with that on the onset. When the flow state is characterized by the supercritical Rayleigh number $Ra/Ra_{c}$ ($Ra$ is the Rayleigh number), our study shows that the transition to fully developed turbulence in strongly confined geometries is advanced. For example, while the flow becomes fully developed turbulence at $Ra\approx 200Ra_c$ in a $\varGamma =1$ cell, the same transition in a $\varGamma =1/20$ cell only requires $Ra\approx 3Ra_c$. Direct numerical simulation and linear stability analysis show that in the strongly confined regime, multiple vertically stacked roll structures appear just above the onset of convection. With an increase of the driving strength, the flow switches between different-roll states stochastically, resulting in no well-defined large-scale coherent flow. Owing to this new mechanism that only exists in systems with $\varGamma <1$, the flow becomes turbulent in a much earlier stage. These findings shed new light on how turbulence is generated in strongly confined geometries.
In two-dimensional (2D) electron systems, the viscous flow is dominant when electron-electron collisions occur more frequently than the impurity or phonon scattering. In this work, a quantum hydrodynamic model, considering viscosity, is proposed to investigate the interaction of a charged particle moving above the two-dimensional viscous electron gas. The stopping power, perturbed electron gas density, and the spatial distribution of the velocity vector field have been theoretically analyzed and numerically calculated. The calculation results show that viscosity affects the spatial distribution and amplitude of the velocity field. The stopping power, which is an essential quantity for describing the interactions of ions with the 2D electron gas, is calculated, indicating that the incident particle will suffer less energy loss due to the weakening of the dynamic electron polarization and induced electric field in 2D electron gas with the viscosity. The values of the stopping power may be more accurate after considering the effect of viscosity. Our results may open up new possibilities to control the interaction of ions with 2D electron gas in the surface of metal or semiconductor heterostructure by variation of the viscosity.
As frontline workers, pharmacists often face significant work stress, especially in psychiatric settings. A multicenter cross-sectional design was conducted in 41 psychiatric hospitals. The Depression, Anxiety and Stress Scale–21 (DASS-21) was used to measure the mental health of 636 pharmacists. We also collected demographic data and work-related variables. The prevalence of depression, anxiety and stress was 20.60%, 22.96% and 8.96%, respectively. Multivariate logistic regression showed that several common factors were associated with depression, anxiety and stress, including professional identity (odds ratio [OR] = 0.132, 0.381 and 0.352) and verbal violence (OR = 2.068, 2.615 and 2.490). Those who were satisfied with their job were less likely to develop depression (OR = 0.234) or anxiety (OR = 0.328). We found specific factors associated with mental health. Older age (OR = 1.038) and perceived negative impact (OR = 2.398) of COVID-19 on medical work were associated with anxiety, and those with frontline experience with COVID-19 patients (OR = 2.306) were more likely to experience stress. More than one-fifth of pharmacists in psychiatric hospitals experienced symptoms of depression or anxiety during the pandemic, highlighting the need for policy change to improve workplace conditions and psychological well-being for this professional group.
By combining the technique of energy selective surface and frequency selective rasorber, an energy selective rasorber is proposed, which performs selective energy protection in the low communication frequency band (0.8–2 GHz) and wave-absorbing property in the high-frequency band (6–18 GHz). The design consists of two layers, of which the bottom one contains a lumped diode structure for energy selection function in the transmission band, while together with the top layer, they perform a wideband wave absorbing function. The simulated and measured results agree well with each other, and both show good absorption in 6–18 GHz and energy-selective property around 1.86 GHz. That is, when the incident power changes from −30 to 14 dBm, the reflection coefficient changes from below −22 dB to above −2 dB, while the transmission coefficient changes from above −3 dB to below −17 dB.
The effects of monolaurin (ML) on the health of piglets infected with porcine epidemic diarrhoea virus (PEDV) have not been fully understood. This study aimed to investigate its role in blood biochemical profile, intestinal barrier function, antioxidant function and the expression of antiviral genes in piglets infected with PEDV. Thirty-two piglets were randomly divided into four groups: control group, ML group, PEDV group and ML + PEDV group. Piglets were orally administrated with ML at a dose of 100 mg/kg·BW for 7 d before PEDV infection. Results showed that PEDV infection significantly decreased D-xylose content and increased intestinal fatty acid-binding protein content, indicating that PEDV infection destroyed intestinal barrier and absorption function. While it could be repaired by ML administration. Moreover, ML administration significantly decreased plasma blood urea nitrogen and total protein content upon PEDV infection. These results suggested ML may increase protein utilisation efficiency. ML administration significantly decreased the number of large unstained cells and Hb and increased the number of leucocytes and eosinophils in the blood of PEDV-infected piglets, indicating ML could improve the immune defense function of the body. In the presence of PEDV infection, ML administration significantly increased superoxide dismutase and catalase activities in blood and colon, respectively, indicating ML could improve antioxidant capacity. Besides, ML administration reversed the expression of ISG15, IFIT3 and IL-29 throughout the small intestine and Mx1 in jejunum and ileum, indicating the body was in recovery from PEDV infection. This study suggests that ML could be used as a kind of feed additive to promote swine health upon PEDV infection.
Despite rising incidences of global disasters, basic principles of disaster medicine training are barely taught in Singapore’s 3 medical schools. The aim of this study was to evaluate the current levels of emergency preparedness, attitudes, and perceptions of disaster medicine education among medical students in Singapore.
Methods:
The Emergency Preparedness Information Questionnaire (EPIQ) was provided to enrolled medical students in Singapore by means of an online form, from March 6, 2020, to February 20, 2021. A total of 635 (25.7%) responses were collated and analyzed.
Results:
Mean score for overall familiarity was low, at 1.50 ± 0.74, on a Likert scale of 1 for not familiar to 5 for very familiar. A total of 90.6% of students think that disaster medicine is an important facet of the curriculum, and 93.1% agree that training should be provided for medical students. Although 77.3% of respondents believe that they are unable to contribute to a disaster scenario currently, 92.8% believe that they will be able to contribute with formal training.
Conclusions:
Despite low levels of emergency preparedness knowledge, the majority of medical students in Singapore are keen for adaptation of disaster medicine into the current curriculum to be able to contribute more effectively. This can arm future health-care professionals with the confidence to respond to any potential emergency.
We present the third data release from the Parkes Pulsar Timing Array (PPTA) project. The release contains observations of 32 pulsars obtained using the 64-m Parkes ‘Murriyang’ radio telescope. The data span is up to 18 yr with a typical cadence of 3 weeks. This data release is formed by combining an updated version of our second data release with $\sim$3 yr of more recent data primarily obtained using an ultra-wide-bandwidth receiver system that operates between 704 and 4032 MHz. We provide calibrated pulse profiles, flux density dynamic spectra, pulse times of arrival, and initial pulsar timing models. We describe methods for processing such wide-bandwidth observations and compare this data release with our previous release.
Breast cancer is a high-risk disease with a high mortality rate among women. Chemotherapy plays an important role in the treatment of breast cancer. However, chemotherapy eventually results in tumours that are resistant to drugs. In recent years, many studies have revealed that the activation of Wnt/β-catenin signalling is crucial for the emergence and growth of breast tumours as well as the development of drug resistance. Additionally, drugs that target this pathway can reverse drug resistance in breast cancer therapy. Traditional Chinese medicine has the properties of multi-target and tenderness. Therefore, integrating traditional Chinese medicine and modern medicine into chemotherapy provides a new strategy for reversing the drug resistance of breast tumours. This paper mainly reviews the possible mechanism of Wnt/β-catenin in promoting the process of breast tumour drug resistance, and the progress of alkaloids extracted from traditional Chinese medicine in the targeting of this pathway in order to reverse the drug resistance of breast cancer.
The purpose of this study was to analyse the clinical characteristics of patients with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) PCR re-positivity after recovering from coronavirus disease 2019 (COVID-19). Patients (n = 1391) from Guangzhou, China, who had recovered from COVID-19 were recruited between 7 September 2021 and 11 March 2022. Data on epidemiology, symptoms, laboratory test results and treatment were analysed. In this study, 42.7% of recovered patients had re-positive result. Most re-positive patients were asymptomatic, did not have severe comorbidities, and were not contagious. The re-positivity rate was 39%, 46%, 11% and 25% in patients who had received inactivated, mRNA, adenovirus vector and recombinant subunit vaccines, respectively. Seven independent risk factors for testing re-positive were identified, and a predictive model was constructed using these variables. The predictors of re-positivity were COVID-19 vaccination status, previous SARs-CoV-12 infection prior to the most recent episode, renal function, SARS-CoV-2 IgG and IgM antibody levels and white blood cell count. The predictive model could benefit the control of the spread of COVID-19.