We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A clear definition of society helps prevent conceptual misunderstanding. When making practical measurement of societies, it is worth noting that social complexity is actually a jagged concept that encompasses multiple weakly correlated dimensions. Understanding such jaggedness assists interpretation of the divergence between anonymous societies and the social brain hypothesis.
This study evaluated the effects of chenodeoxycholic acid (CDCA), a farnesoid X receptor (FXR) potential activator, on growth performance, antioxidant capacity, glucose metabolism and inflammation in largemouth bass (Micropterus salmoides) (initial body weight: 5·45 ± 0·02 g) fed a high-carbohydrate diet. Experimental diets included a positive control (5 % α-starch), a negative control (10 % α-starch) and two diets containing 10 % α-starch supplemented with either 0·05 % or 0·10 % CDCA. After 8 weeks, the high-carbohydrate diet reduced growth performance and increased hepatosomatic and viscerosomatic indexes, which were mitigated by 0·10 % CDCA supplementation. The high-carbohydrate diet also increased hepatic glycogen and crude lipid content, both of which were reduced by 0·10 % CDCA. Furthermore, the high-carbohydrate diet-induced oxidative stress, histopathological changes and reduced liver lysozyme activity, which were ameliorated by CDCA supplementation. Molecular analysis showed that the high-carbohydrate diet suppressed FXR and phosphorylated AKT1 (p-AKT1) protein expression in the liver, downregulated insulin signalling (ira, irs, pi3kr1 and akt1), gluconeogenesis (pepck and g6pc) and glycolysis genes (gk, pk and pfkl). CDCA supplementation upregulated fxr expression, activated shp, enhanced the expression of insulin signalling and glycolytic genes (gk, pk and pfkl) and inhibited gluconeogenesis. Additionally, CDCA reduced inflammatory markers (nf-κb and il-1β) and restored anti-inflammatory mediators (il-10, iκb and tgf-β). In conclusion, 0·10 % CDCA improved carbohydrate metabolism and alleviated liver inflammation in largemouth bass fed a high dietary carbohydrate, partially through FXR activation.
Immunological castration can be an alternative to traditional surgical castration. The active immunization against GnRH or kisspeptin has a castrating effect. To date, the fusion protein vaccine of combination with GnRH and kisspeptin have not been studied. Thus, the present study will develop a GnRH6-kisspeptin vaccine by genetic engineering method and investigate its immunocastration effect in male rats. Twenty 20-day-old male rats were randomly divided into two groups: the control group (n=10) and the immunization group (n=10). The initial immunization took place at week 0 followed by three booster doses administered intervals. The control group received an equivalent dose of white oil adjuvant. Orbital blood samples were collected at various time points following the initial immunization, at 0, 2, 4, 6, 8, 10 and 12 weeks, respectively. The entire left testis was weighed and its volume measured at week 12. Samples from the right testis were obtained for histological analysis. Serum levels of GnRH and kisspeptin antibodies, as well as testosterone levels were determined using ELISA. The results showed that the serum levels of GnRH and kisspeptin antibody titres of the immunized rats were significantly higher compared to the control group (P<0.05). Additionally, the testosterone concentration was effectively reduced following the intensified immunization. The testes of the immunized group exhibited a reduction in size and a significant decrease in the number of spermatogonia in the testicular tissue compared to the control group (P<0.05). These data indicate that the recombinant GnRH6-kisspeptin protein effectively induced immunological castration in rats.
This paper proposes a novel method of applying an iterative generation differential equation method to the multi-component nonlinear signal analysis of a diesel engine. The characteristics of a dynamic model of the single cylinder are analysed and discussed. The iterative generation differential decomposition method decomposes the multi-component signal and extracts multiple single-component signals. The sensitive single-component analysis technology of the complex vibration signal of a diesel engine is formed. The relationship between characteristic parameters of engine vibration dynamics and operation law is derived. A priori information about the unmeasured vibration signals of the roll-on/roll-off (Ro-Ro) passenger ships is not required. The experimental data is validly processed based on this developed method. Results show that this method is practical and feasible in analysing diesel engine vibration signals, especially under different load operating conditions.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
High-quality intergenerational relationships positively influence cognitive functioning in older parents. However, there is insufficient information on how they shape the trajectories of mothers’ and fathers’ cognitive functioning decline in multi-child families, owing to the complexity of intergenerational relationships, such as multi-dimensional and ambivalent natures and differences varying across children. Drawing on three waves of data (2014, 2016 and 2018) from a nationally representative survey – the China Longitudinal Ageing Social Survey (N = 9,404) – we used the k-means clustering method to discern patterns of intergenerational relationships in multi-child Chinese families, as well as the growth curve models, to examine the associations between parent–child relationship types and the trajectories of older parents’ cognitive functioning. Five types of intergenerational relationship were identified: alienated, stressfully interacting, independent, beneficially interacting and tight-knit. We then investigated the associations between trajectories of cognitive functioning and the most distant type, the closest type, and the heterogeneity of parent–child relationships across multiple children. The most distant parent–child relationship was significantly related to cognitive functioning trajectories with the alienated (tight-knit) type associated with the lowest (highest) levels of cognitive functioning and the fastest (slowest) cognitive decline. However, the closest parent–child relationship was not significantly related to cognitive functioning trajectories. Moreover, greater variation in relationships with multiple children was correlated with lower levels of cognitive functioning and faster cognitive functioning decline. These associations were stronger among mothers than fathers. This study provides new insights into the potentially protective role of intergenerational relationships in older parents’ cognitive functioning and their gendered differences.
In this study, nine isonitrogenous experimental diets containing graded levels of carbohydrates (40 g/kg, 80 g/kg and 120 g/kg) and crude lipids (80 g/kg, 120 g/kg and 160 g/kg) were formulated in a two-factor (3 × 3) orthogonal design. A total of 945 mandarin fish with similar body weights were randomly assigned to twenty-seven tanks, and the experiment diets were fed to triplicate tanks twice daily for 10 weeks. Results showed that different dietary treatments did not significantly affect the survival rate and growth performance of mandarin fish. However, high dietary lipid and carbohydrate levels significantly decreased the protein content of the whole body and muscle of cultured fish. The lipid content of the whole body, liver and muscle all significantly increased with increasing levels of dietary lipid, while only liver lipid level was significantly affected by dietary carbohydrate level. Hepatic glycogen content increased significantly with increasing dietary carbohydrate levels. As to liver antioxidant capacity, malondialdehyde content increased significantly with increasing dietary lipid or carbohydrate content, and catalase activity showed an opposite trend. Superoxide dismutase activity increased significantly with increasing levels of dietary lipid but decreased first and then increased with increasing dietary carbohydrate levels. Additionally, the increase in both dietary lipid and carbohydrate levels resulted in a significant reduction in muscle hardness. Muscle chewiness, gumminess and shear force were only affected by dietary lipid levels and decreased significantly with increasing dietary lipid levels. In conclusion, considering all the results, the appropriate dietary lipids and carbohydrate levels for mandarin fish were 120 g/kg and 80 g/kg, respectively.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
High-risk Human Papillomavirus (HPV) infections are a leading cause of cervical diseases among Han Chinese women of reproductive age. Despite studies like Mai et al. (2021) addressing HPV prevalence in Southern China, awareness remains low, especially in Southwest China. Our study addresses this gap.
Objective:
This hospital-based, retrospective study analyzes the prevalence of high-risk HPV and its association with cervical intraepithelial neoplasia (CIN) among Han Chinese women of reproductive age in Southwest China.
Methods:
Data were collected from 724 women undergoing routine health exams from December 2022 to April 2023. A total of 102 women with high-risk HPV infections were identified. A survey assessed HPV awareness, CIN incidence, and socio-demographic factors influencing awareness.
Results:
Of the 724 women, 102 (14.1%) were diagnosed with high-risk HPV, with HPV-16 being the most common subtype (22.5%). Awareness was significantly lower among unmarried women (OR: 6.632, p = 0.047), those with high school education or less (OR: 20.571, p = 0.003), and rural residents (OR: 19.483, p = 0.020). HPV-16 was detected in 54.55% of women with high-grade CIN.
Conclusion:
There is an urgent need for targeted education and HPV vaccination in Southwest China, particularly for women with lower education, rural residents, and older individuals. Subtype-specific strategies are essential for preventing and managing CIN.
There’s large heterogeneity present in major depressive disorder (MDD) and controversial evidence on alterations of brain functional connectivity (FC), making it hard to elucidate the neurobiological basis of MDD. Subtyping is one promising solution to characterize this heterogeneity.
Objectives
To identify neurophysiological subtypes of MDD based on FC derived from resting-state functional magnetic resonance imaging using large multisite data and investigate the differences in genetic mechanisms and neurotransmitter basis of FC alterations, and the differences of FC-related cognition between each subtype.
Methods
Consensus clustering of FC patterns was applied to a population of 829 MDD patients from REST-Meta-MDD database after data cleaning and image quality control. Gene transcriptomic data derived from Allen Human Brain Atlas and neurotransmitter receptor/transporter density data acquired by using neuromap toolbox were used to characterize the molecular mechanism underlying each FC-based subtype by identifying the gene set and neurotransmitters/transporters showing high spatial similarity with the profiles of FC alterations between each subtype and 770 healthy controls. The FC-related cognition in each subtype was also selected by lasso regression.
Results
Two stable neurophysiological MDD subtypes were found and labeled as hypoconnectivity (n=527) and hyperconnectivity (n=299) characterized by the FC differences in each subtype relative to controls, respectively. The two subtypes did not differ in age, sex, and scores of Hamilton Depression/Anxiety Scale.
The genes related to FC alterations were enriched in ion transmembrane transport, synaptic transmission/organization, axon development, and regulation of neurotransmitter level for both subtypes, but specifically enriched in glial cell differentiation for hypoconnectivity subtype, while enriched in regulation of presynaptic membrane and regulation of neuron differentiation for hyperconnectivity subtype.
FC alterations were associated with the density of 5-HT2a receptor in both subtypes. For hyperconnectivity subtype, FC alterations were also correlated with the density of norepinephrine transporter, glutamate receptor, GABA receptor, 5-HT1b receptor, and cannabinoid receptor.
Both subtypes showed correlations between FC and categorization, motor inhibition, and localization. The FC in hypoconnectivity subtype correlated with response inhibition, selective attention, face recognition, sleep, empathy, expertise, uncertainty, and anticipation, while that was related to inference, speech perception, and reward anticipation in hyperconnectivity subtype.
Conclusions
Our findings suggested the presence of two neuroimaging subtypes of MDD characterized by hypo or hyper-connectivity. The two subtypes had both shared and distinct genetic mechanisms, neurotransmitter receptor/transporter profiles, and cognition types.
Maternal intermittent fasting (MIF) can have significant effects on several tissue and organ systems of the body, but there is a lack of research on the effects on the reproductive system. So, the aim of our study was to analyze the effects of MIF on fertility. B6C3F1Crl (C57BL/6N × C3H/HeN) male and female mice were selected for the first part of the experiments and were analyzed for body weight and fat weight after administration of the MIF intervention, followed by analysis of sperm counts and activation and embryo numbers. Subsequently, two strains of mice, C57BL/6NCrl and BALB/cJRj, were selected and administered MIF to observe the presence or absence of vaginal plugs for the purposes of mating success, sperm and oocyte quality, pregnancy outcome, fertility status and in vitro fertilization (IVF). Our results showed a significant reduction in body weight and fat content in mice receiving MIF intervention in B6C3F1Crl mice. Comparing the reproduction of the two strains of mice. However, the number of litters was increased in all MIF interventions in C57BL/6NCrl, but not statistically significant. In BALB/cJRj, there was a significant increase in the number of pregnant females as well as litter size in the MIF treatment group, as well as vaginal plugs, and IVF. There was also an increase in sperm activation and embryo number and the MIF intervention significantly increased sperm count and activation. Our results suggest that MIF interventions may be beneficial for reproduction in mice.
To overcome Yb lasing, a kilowatt-level 1535 nm fiber laser is utilized to in-band pump an Er:Yb co-doped fiber (EYDF) amplifier. The output power of a 301 W narrow-linewidth EYDF amplifier operating at 1585 nm, with 3 dB bandwidth of 150 pm and ${M}^2$< 1.4, is experimentally demonstrated. To the best of our knowledge, it is the highest output power achieved in L-band narrow-linewidth fiber amplifiers with good beam quality. Theoretically, a new ion transition behavior among energy levels for in-band pumping EYDF is uncovered, and a spatial-mode-resolved nonlinearity-assisted theoretical model is developed to understand its internal dynamics. Numerical simulations reveal that the reduction in slope efficiency is significantly related to excited-state absorption (ESA). ESA has a nonlinear hindering effect on power scaling. It can drastically lower the pump absorption and slope efficiency with increasing pump power for in-band pumped EYDF amplifiers. Meanwhile, optimized approaches are proposed to improve its power to the kilowatt level via in-band pumping.
Oil palm has been criticized for being an environmentally unfriendly oil crop. In recent decades, oil palm plantations have extended into conservation landscapes, causing severe environmental damage and harming biodiversity. Nevertheless, oil palm remains a highly productive oil crop from which most of the world's vegetable oil is produced. Therefore, measuring the environmental impact of oil palm plantations and identifying suitable land to support its sustainable development is crucial.
Technical summary
To meet the rising global palm oil demand sustainably, we tracked annual land cover changes in oil palm plantation and mapped areas worldwide suitable for sustainable oil palm cultivation. From 1982 to 2019, 3.6 Mha of forests were converted to oil palm plantations. Despite a recent decline in overall conversion, the shift from forest to oil palm plantations has become increasingly more common over the last decade, rising from 14.1 to 34.5% between 2009 and 2019. During 1982–2019, 2.23 Mha of peatland and 0.1 Mha of protected areas were converted for oil palm plantations. The potential sustainable land amounts to 103.5–317.9 Mha (Asia: 44.6–105.1 Mha, Africa: 34.7–96.4 Mha, and Latin America: 35.2–116.5 Mha). Future oil palm expansion is anticipated to take place in countries like Brazil, Nigeria, Colombia, Indonesia, Ivory Coast, the Democratic Republic of the Congo, and Ghana, where more sustainable land is available for cultivation. Malaysia, on the other hand, is about to exceed the area of sustainable cultivation, and further expansion is not recommended. These findings can advance our understanding of the environmentally damaging impacts of oil palm and enhance the feasibility of sustainable oil palm development.
Social media summary
How should suitable land be chosen for the establishment of oil palm plantations to support the sustainable development of the oil palm plantation industry?
Foilless diode are widely used in high-power microwave devices, but the traditional foilless diodes have large volume, heavy weight, and high power consumption, which are not conducive to the application of high-power microwave system on mobile platform. In order to reduce the size of the foilless diode, improve the transmission efficiency of electron beams, and reduce the weight and power consumption of the guiding magnetic field system, an axial foilless diode with a composite guiding magnetic field system is developed in this paper. By adjusting the structure size and magnetic field parameters of solenoid coil, permanent magnet, and soft magnet, the configuration of the composite magnetic field is optimized. The diameter of the anode tube is about 40% smaller than that of the original structure, and the weight and power consumption of the guiding magnetic system are about 40% lower than that of the original system when the same axial magnetic field intensity in the uniform region is generated. When the magnetic field strength of the permanent magnet is set as 1.4 T and that of the solenoid coil is in the range of 0.5 T∼1 T, the electron beam transmission efficiency is 100%, and the diode impedance is adjustable in the range of 100 Ω∼240 Ω. The experimental results verify the correctness of the simulation analysis. The experimental results show that when the magnetic field strength of the solenoid coil is 0.98 T (0.5 T) and that of the permanent magnet is 1.4 T, the transmission efficiency of the high-current annular electron beam with a peak voltage of 636 kV (590 kV) and a peak current of 3.3 kA (2.6 kA) is 100%, and the diode impedance is about 194 Ω (220 Ω).
In order to establish a compact all-optical Thomson scattering source, experimental studies were conducted on the 45 TW Ti: sapphire laser facility. By including a steel wafer, mixed gas, and plasma mirror into a double-exit jet, several mechanisms, such as shock-assisted ionization injection, ionization injection, and driving laser reflection, were integrated into one source. So, the source of complexity was remarkably reduced. Electron bunches with central energy fluctuating from 90 to 160 MeV can be produced. Plasma mirrors were used to reflect the driving laser. The scattering of the reflected laser on the electron bunches led to the generation of X-ray photons. Through comparing the X-ray spots under different experimental conditions, it is confirmed that the X-ray photons are generated by Thomson scattering. For further application, the energy spectra and source size of the Thomson scattering source were measured. The unfolded spectrum contains a large amount of low-energy photons besides a peak near 67 keV. Through importing the electron energy spectrum into the Monte Carlo simulation code, the different contributions of the photons with small and large emitting angles can be used to explain the origin of the unfolded spectrum. The maximum photon energy extended to about 500 keV. The total photon production was 107/pulse. The FWHM source size was about 12 μm.
A 60-d feeding trial was conducted to explore the potential regulatory effects of dietary Clostridium butyricum cultures (CBC) supplementation in high-carbohydrate diet (HCD) on carbohydrate utilisation, antioxidant capacity and intestinal microbiota of largemouth bass. Triplicate groups of largemouth bass (average weight 35·03 ± 0·04 g), with a destiny of twenty-eight individuals per tank, were fed low-carbohydrate diet and HCD supplemented with different concentration of CBC (0 %, 0·25 %, 0·50 % and 1·00 %). The results showed that dietary CBC inclusion alleviated the hepatic glycogen accumulation induced by HCD intake. Additionally, the expression of hepatic ampkα1 and insulin signaling pathway-related genes (ira, irb, irs, p13kr1 and akt1) increased linearly with dietary CBC inclusion, which might be associated with the activation of glycolysis-related genes (gk, pfkl and pk). Meanwhile, the expression of intestinal SCFA transport-related genes (ffar3 and mct1) was significantly increased with dietary CBC inclusion. In addition, the hepatic antioxidant capacity was improved with dietary CBC supplementation, as evidenced by linear decrease in malondialdehyde concentration and expression of keap1, and linear increase in antioxidant enzyme activities (total antioxidative capacity, total superoxide dismutase and catalase) and expression of antioxidant enzyme-related genes (nrf2, sod1, sod2 and cat). The analysis of bacterial 16S rRNA V3–4 region indicated that dietary CBC inclusion significantly reduced the enrichment of Firmicutes and potential pathogenic bacteria genus Mycoplasma but significantly elevated the relative abundance of Fusobacteria and Cetobacterium. In summary, dietary CBC inclusion improved carbohydrate utilization, antioxidant capacity and intestinal microbiota of largemouth bass fed HCD.
The rapid development of the digital economy has highlighted the crucial role of data in economic growth. This study investigates the impact of two types of innovation on long-term growth by incorporating data into a model of creative destruction and knowledge accumulation. Unlike traditional factors, data exhibit nonrivalry between the two research and development (R&D) sectors, thereby influencing the growth rate of economic outputs simultaneously without interference. Our findings reveal the existence of a balanced growth path (BGP) in both the decentralized economy and the social planner’s economy. In horizontal innovation, data can be transformed into digital knowledge to promote the economic growth [Cong et al. (2021)]. In addition to horizontal innovation, the utilization of data in vertical innovation also enhances the success rate of innovation, with a gradual decrease in per capita data usage on the BGP. Moreover, as agents accumulate human capital, the economy achieves higher output levels, effectively addressing consumer privacy concerns. However, along the transitional path, insufficient data provision by both R&D sectors leads to lower economic growth rates or more intense economic fluctuations, necessitating policy interventions.