We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This focused textbook demonstrates cutting-edge concepts at the intersection of machine learning (ML) and wireless communications, providing students with a deep and insightful understanding of this emerging field. It introduces students to a broad array of ML tools for effective wireless system design, and supports them in exploring ways in which future wireless networks can be designed to enable more effective deployment of federated and distributed learning techniques to enable AI systems. Requiring no previous knowledge of ML, this accessible introduction includes over 20 worked examples demonstrating the use of theoretical principles to address real-world challenges, and over 100 end-of-chapter exercises to cement student understanding, including hands-on computational exercises using Python. Accompanied by code supplements and solutions for instructors, this is the ideal textbook for a single-semester senior undergraduate or graduate course for students in electrical engineering, and an invaluable reference for academic researchers and professional engineers in wireless communications.
An actively controllable cascaded proton acceleration driven by a separate 0.8 picosecond (ps) laser is demonstrated in proof-of-principle experiments. MeV protons, initially driven by a femtosecond laser, are further accelerated and focused into a dot structure by an electromagnetic pulse (EMP) on the solenoid, which can be tuned into a ring structure by increasing the ps laser energy. An electrodynamics model is carried out to explain the experimental results and show that the dot-structured proton beam is formed when the outer part of the incident proton beam is optimally focused by the EMP force on the solenoid; otherwise, it is overfocused into a ring structure by a larger EMP. Such a separately controlled mechanism allows precise tuning of the proton beam structures for various applications, such as edge-enhanced proton radiography, proton therapy and pre-injection in traditional accelerators.
We sought to assess the degree to which environmental risk factors affect CHD prevalence using a case–control study.
Methods:
A hospital-based study was conducted by collecting data from outpatients between January 2016 and January 2021, which included 31 CHD cases and 72 controls from eastern China. Risk ratios were estimated using univariate and multivariate logistic regression models and mediating effect analysis.
Results:
Residential characteristics (usage of cement flooring, odds ratio = 17.04[1.954–148.574], P = 0.01; musty smell, odds ratio = 3.105[1.198–8.051], P = 0.02) and indoor total volatile organic compound levels of participants’ room (odds ratio = 31.846[8.187–123.872, P < 0.001), benzene level (odds ratio = 7.370[2.289–23.726], P = 0.001) increased the risk of CHDs in offspring. And folic acid plays a masking effect, which mitigates the affection of the total volatile organic compound (indirect effect = -0.072[−0.138,-0.033]) and formaldehyde (indirect effect = −0.109[-0.381,-0.006]) levels on the incidence of CHDs. While food intake including milk (odds ratio = 0.396[0.16–0.977], P = 0.044), sea fish (odds ratio = 0.273[0.086–0.867], P = 0.028), and wheat (odds ratio = 0.390[0.154–0.990], P = 0.048) were all protective factors for the occurrence of CHDs. Factors including women reproductive history (history of conception control, odds ratio = 2.648[1.062–6.603], P = 0.037; history of threatened abortion, odds ratio = 2.632[1.005–6.894], P = 0.049; history of dysmenorrhoea (odds ratio = 2.720[1.075–6.878], P = 0.035); sleep status (napping habit during daytime, odds ratio = 0.856[0.355–2.063], P = 0.047; poor sleep quality, odds ratio = 3.180[1.037–9.754], P = 0.043); and work status (working time > 40h weekly, odds ratio = 2.882[1.172–7.086], P = 0.021) also influenced the CHDs incidence to differing degrees.
Conclusion:
Diet habits, nutrients intake, psychological status of pregnant women, and residential air quality were associated with fetal CHDs. Indoor total volatile organic compound content was significantly correlated with CHDs risk, and folic acid may serve as a masking factor that reduce the harmful effects of air pollutants.
Broad-spectrum antibiotic use in febrile neutropenia is often driven by concerns for severe and drug-resistant infections. In select patients who do not have an active infection and improve, their prolonged and unnecessary use contributes to antimicrobial resistance, drug toxicity, and increased healthcare costs. We describe the implementation of an antibiotic de-escalation protocol to reduce inappropriate antibiotic use in febrile neutropenia among hematology patients.
Methods:
We conducted baseline analysis (January–June 2024) of antibiotic use in febrile neutropenia cases admitted under hematology. Interventions included the (i) development of an antibiotic de-escalation protocol to guide clinical management, (ii) a roadshow to educate and improve uptake of this protocol, and (iii) regular feedback via “report cards” for hematology teams. The primary outcome was the proportion of febrile neutropenia cases with inappropriate antibiotic use, with secondary measures including adverse outcomes (in-hospital mortality, Clostridioides difficile infection, need for intensive care).
Results:
Baseline data indicated inappropriate antibiotic use rates of 45.5–66.7% per month from January to June 2024, with 13–28 days of inappropriate therapy. The protocol was developed in July 2024, with a subsequent roadshow to promote its uptake. Regular feedback was provided in the form of “report cards” every 2-monthly thereafter. Post-intervention, inappropriate antibiotic use decreased to a median of 23.35% from July to December 2024, with no observed increase in adverse outcomes.
Conclusions:
The implementation of a structured de-escalation protocol, combined with frequent education and feedback, effectively reduced inappropriate antibiotic use in febrile neutropenia without compromising patient safety.
This study presents a novel investigation into the vortex dynamics of flow around a near-wall rectangular cylinder based on direct numerical simulation at $Re=1000$, marking the first in-depth exploration of these phenomena. By varying aspect ratios ($L/D = 5$, $10$, $15$) and gap ratios ($G/D = 0.1$, $0.3$, $0.9$), the study reveals the vortex dynamics influenced by the near-wall effect, considering the incoming laminar boundary layer flow. Both $L/D$ and $G/D$ significantly influence vortex dynamics, leading to behaviours not observed in previous bluff body flows. As $G/D$ increases, the streamwise scale of the upper leading edge (ULE) recirculation grows, delaying flow reattachment. At smaller $G/D$, lower leading edge (LLE) recirculation is suppressed, with upper Kelvin–Helmholtz vortices merging to form the ULE vortex, followed by instability, differing from conventional flow dynamics. Larger $G/D$ promotes the formation of an LLE shear layer. An intriguing finding at $L/D = 5$ and $G/D = 0.1$ is the backward flow of fluid from the downstream region to the upper side of the cylinder. At $G/D = 0.3$, double-trailing-edge vortices emerge for larger $L/D$, with two distinct flow behaviours associated with two interactions between gap flow and wall recirculation. These interactions lead to different multiple flow separations. For $G/D = 0.9$, the secondary vortex (SV) from the plate wall induces the formation of a tertiary vortex from the lower side of the cylinder. Double-SVs are observed at $L/D = 5$. Frequency locking is observed in most cases, but is suppressed at $L/D = 10$ and $G/D = 0.9$, where competing shedding modes lead to two distinct evolutions of the SV.
Hand, foot, and mouth disease (HFMD) shows spatiotemporal heterogeneity in China. A spatiotemporal filtering model was constructed and applied to HFMD data to explore the underlying spatiotemporal structure of the disease and determine the impact of different spatiotemporal weight matrices on the results. HFMD cases and covariate data in East China were collected between 2009 and 2015. The different spatiotemporal weight matrices formed by Rook, K-nearest neighbour (KNN; K = 1), distance, and second-order spatial weight matrices (SO-SWM) with first-order temporal weight matrices in contemporaneous and lagged forms were decomposed, and spatiotemporal filtering model was constructed by selecting eigenvectors according to MC and the AIC. We used MI, standard deviation of the regression coefficients, and five indices (AIC, BIC, DIC, R2, and MSE) to compare the spatiotemporal filtering model with a Bayesian spatiotemporal model. The eigenvectors effectively removed spatial correlation in the model residuals (Moran’s I < 0.2, p > 0.05). The Bayesian spatiotemporal model’s Rook weight matrix outperformed others. The spatiotemporal filtering model with SO-SWM was superior, as shown by lower AIC (92,029.60), BIC (92,681.20), and MSE (418,022.7) values, and higher R2 (0.56) value. All spatiotemporal contemporaneous structures outperformed the lagged structures. Additionally, eigenvector maps from the Rook and SO-SWM closely resembled incidence patterns of HFMD.
Patients with chronic insomnia are characterized by alterations in default mode network and alpha oscillations, for which the medial parietal cortex (MPC) is a key node and thus a potential target for interventions.
Methods
Fifty-six adults with chronic insomnia were randomly assigned to 2 mA, alpha-frequency (10 Hz), 30 min active or sham transcranial alternating current stimulation (tACS) applied over the MPC for 10 sessions completed within two weeks, followed by 4- and 6-week visits. The connectivity of the dorsal and ventral posterior cingulate cortex (vPCC) was calculated based on resting functional MRI.
Results
For the primary outcome, the active group showed a higher response rate (≥ 50% reduction in Pittsburgh Sleep Quality Index (PSQI)) at week 6 than that of the sham group (71.4% versus 3.6%) (risk ratio 20.0, 95% confidence interval 2.9 to 139.0, p = 0.0025). For the secondary outcomes, the active therapy induced greater and sustained improvements (versus sham) in the PSQI, depression (17-item Hamilton Depression Rating Scale), anxiety (Hamilton Anxiety Rating Scale), and cognitive deficits (Perceived Deficits Questionnaire-Depression) scores. The response rates in the active group decreased at weeks 8–14 (42.9%–57.1%). Improvement in sleep was associated with connectivity between the vPCC and the superior frontal gyrus and the inferior parietal lobe, whereas vPCC-to-middle frontal gyrus connectivity was associated with cognitive benefits and vPCC-to-ventromedial prefrontal cortex connectivity was associated with alleviation in rumination.
Conclusions
Targeting the MPC with alpha-tACS appears to be an effective treatment for chronic insomnia, and vPCC connectivity represents a prognostic marker of treatment outcome.
Recent studies have increasingly utilized gradient metrics to investigate the spatial transitions of brain organization, enabling the conversion of macroscale brain features into low-dimensional manifold representations. However, it remains unclear whether alterations exist in the cortical morphometric similarity (MS) network gradient in patients with schizophrenia (SCZ). This study aims to examine potential differences in the principal MS gradient between individuals with SCZ and healthy controls and to explore how these differences relate to transcriptional profiles and clinical phenomenology.
Methods
MS network was constructed in this study, and its gradient of the network was computed in 203 patients with SCZ and 201 healthy controls, who shared the same demographics in terms of age and gender. To examine irregularities in the MS network gradient, between-group comparisons were carried out, and partial least squares regression analysis was used to study the relationships between the MS network gradient-based variations in SCZ, and gene expression patterns and clinical phenotype.
Results
In contrast to healthy controls, the principal MS gradient of patients with SCZ was primarily significantly lower in sensorimotor areas, and higher in more areas. In addition, the aberrant gradient pattern was spatially linked with the genes enriched for neurobiologically significant pathways and preferential expression in various brain regions and cortical layers. Furthermore, there were strong positive connections between the principal MS gradient and the symptomatologic score in SCZ.
Conclusions
These findings showed changes in the principal MS network gradient in SCZ and offered potential molecular explanations for the structural changes underpinning SCZ.
Major depressive disorder (MDD) and coronary heart disease (CHD) can both cause significant morbidity and mortality. The association of MDD and CHD has long been identified, but the mechanisms still require further investigation. Seven mRNA microarray datasets containing samples from patients with MDD and CHD were downloaded from Gene Expression Omnibus. Combined matrixes of MDD and CAD were constructed for subsequent analysis. Differentially expressed genes (DEGs) were identified. Functional enrichment analyses based on shared DEGs were conducted to identify pivotal pathways. A protein-protein network was also applied to further investigate the functional interaction. Results showed that 24 overlapping genes were identified. Enrichment analysis indicated that the shared genes are mainly associated with immune function and ribosome biogenesis. The functional interactions of shared genes were also demonstrated by PPI network analysis. In addition, three hub genes including MMP9, S100A8, and RETN were identified. Our results indicate that MDD and CHD have a genetic association. Genes relevant to immune function, especially IL-17 signalling pathway may be involved in the pathogenesis of MDD and CHD.
The vitamin K (VK) levels vary greatly among different populations and in different regions. Currently, there is a lack of reference intervals for VK levels in healthy individuals, The aim of this study is to establish and validate the reference intervals of serum vitamin K1 (VK1) and vitamin K2 (VK2, specifically including menaquinone-4 (MK4) and menaquinone-7 (MK7)) levels in some healthy populations in Beijing. Serum VK1, MK4, and MK7 were firstly measured by high-performance liquid chromatography and mass spectrometry in 434 subjects. The reference intervals for three indicators were established by calculating the data of 2.5 and 97.5 percentiles. Finally, preliminary clinical validation was conducted on 60 apparent healthy individuals undergoing physical examination. In the young, middle-aged, and elderly groups, the reference intervals of VK1 were 0.180 ng/mL ∼ 1.494 ng/mL, 0.247 ng/mL ∼ 1.446 ng/mL, and 0.167 ng/mL ∼ 1.445 ng/mL, respectively. The reference intervals of MK4 were 0.009 ng/mL ∼ 0.115 ng/mL, 0.002 ng/mL ∼ 0.103 ng/mL, and 0.003 ng/mL ∼ 0.106 ng/mL, respectively. The reference intervals of MK7 were 0.169 ng/mL ∼ 0.881 ng/mL, 0.238 ng/mL ∼ 0.936 ng/mL, and 0.213 ng/mL ∼ 1.012 ng/mL, respectively. The reference intervals had been validated by the samples of healthy individuals for physical examination. In conclusion, the reference intervals of VK established in this study with different age groups have certain clinical applicability, providing data support for further multicentre studies.
The safety of human-collaborative operations with robots depends on monitoring the external torque of the robot, in which there are toque sensor-based and torque sensor-free methods. Economically, the classic method for estimating joint external torque is the first-order momentum observer (MOB) based on a physic model without torque sensors. However, uncertainties in the dynamic model, which encompasses parameters identification error and joint friction, affect the torque estimation accuracy. To address this issue, this paper proposes using the backpropagation neural network (BPNN) method to estimate joint external torque without the delicate physical model by utilizing the powerful machine learning ability to handle the uncertainties of the MOB method and improve the accuracy of torque estimation. Using data obtained from the torque sensor to train the BPNN to build up a digital torque model, the trained BPNN can perceive force in practical applications without relying on the torque sensor. In the end, by contrast to the classic first-order MOB, the result demonstrates that BPNN achieves higher estimation accuracy compared to the MOB.
We have developed an interactive system comprising a soft wearable robot hand and a wireless task board, facilitating the interaction between the hand and regular daily objects for task-oriented training in stroke rehabilitation. A ring-reinforced soft actuator (RSA) to accommodate different hand sizes and enable flexion and extension movements was introduced in this paper. Individually controlled finger actuators assist stroke patients during various grasping tasks. A wireless task board was developed to support the training, allowing for the placement of training objects and seamless interaction with the soft robotic hand. Evaluation with seven stroke subjects shows significant improvements in upper limb functions (FMA), hand-motor abilities (ARAT, BBT), and maximum grip strengths after 20 sessions of this task-oriented training. These improvements were observed to persist for at least 3 months post-training. The results demonstrate its potential to enhance stroke rehabilitation and promote hand-motor recovery. This lightweight, user-friendly interactive system facilitates frequent hand practice and easily integrates into regular rehabilitation therapy routines.
Substantial changes resulting from the interaction of environmental and dietary factors contribute to an increased risk of obesity, while their specific associations with obesity remain unclear. We identified inflammation-related dietary patterns (DP) and explored their associations with obesity among urbanised Tibetan adults under significant environmental and dietary changes. Totally, 1826 subjects from the suburbs of Golmud City were enrolled in an open cohort study, of which 514 were followed up. Height, weight and waist circumference were used to define overweight and obesity. DP were derived using reduced rank regression with forty-one food groups as predictors and high-sensitivity C-reactive protein and prognostic nutritional index as inflammatory response variables. Altitude was classified as high or ultra-high. Two DP were extracted. DP-1 was characterised by having high consumptions of sugar-sweetened beverages, savoury snacks, and poultry and a low intake of tsamba. DP-2 had high intakes of poultry, pork, animal offal, and fruits and a low intake of butter tea. Participants in the highest tertiles (T3) of DP had increased risks of overweight and obesity (DP-1: OR = 1·37, 95 % CI 1·07, 1·77; DP-2: OR = 1·48, 95 % CI 1·18, 1·85) than those in the lowest tertiles (T1). Participants in T3 of DP-2 had an increased risk of central obesity (OR = 2·25, 95 % CI 1·49, 3·39) than those in T1. The positive association of DP-1 with overweight and obesity was only significant at high altitudes, while no similar effect was observed for DP-2. Inflammation-related DP were associated with increased risks of overweight and/or obesity.
Demoralization isa common psychological problem in cancer patients. The purpose of this study is to systematically evaluate the correlated factors of demoralization among cancer patients. We also summarized the available evidence, effect estimates, and the strength of statistical associations between demoralization and its associated factors.
Methods
We systematically searched PubMed, Web of Science, CINAHL, Embase, the Cochrane Library, PsycINFO, and 2 electronic databases to identify studies published up to October 2023 with data on the correlates of demoralization. Two researchers independently reviewed references, extracted data, and assessed data quality. Meta-analysis was performed using R4.1.1 software.
Results
Thirty-eight studies were included in this meta-analysis. For the most studied sociodemographic correlates, demoralization was negatively correlated with income (z = −0.29, 95% CI: −0.51, −0.02), education (z = − 0.11, 95% CI: − 0.16, −0.05), and age (z = −0.45, 95%CI: −0.75, −0.01). For the most studied clinical correlates, demoralization was positively correlated with symptom burden (z = 0.37, 95% CI: 0.22, 0.50) and negatively correlated with quality of life (z = −0.40, 95% CI: −0.54, −0.24). For the most studied psychosocial correlates, demoralization was negatively correlated with social support (z = −0.39, 95% CI: −0.51, −0.26) and positively correlated with anxiety (z = 0.65, 95% CI: 0.56, 0.73), depression (z = 0.61, 95% CI: 0.54, 0.67), and suicidal ideation (z = 0.48, 95% CI: 0.34, 0.60).
Significance of results
Demoralization showed either positive or negative associations with sociodemographic, clinical, and psychological variables. More research is needed to explore the underlying mechanisms to develop effective interventions. This review provides information on the factors associated with demoralization in cancer patients, which can be used to inform strategies for clinical care providers.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
Understanding the interactive effects of temperature and diet on insect life cycles is crucial for effective pest management. Here, the influence of different temperatures and diets on the life cycle of Conogethes punctiferalis was investigated using the age-stage, two-sex life table analysis. The results support the hypothesis that temperature and diets (maize, apple, and artificial diet) significantly influence the entire life cycle performance of C. punctiferalis. The duration of larval development was significantly prolonged, whereas adult lifespan was shortened and showed lower reproductive capacity on apple and artificial diet than maize. The total pre-oviposition period was longer on apples than on maize and artificial diet at both temperatures (20, 26°C). The highest r (0.113 d−1), λ (1.128 d−1), R0 (57.213), and GRR (75.54) of C. punctiferalis were found on maize at 26°C, while the highest T (45.062) was found on apples. Similar results were obtained in the age-specific survival curves (sxj), fecundity (mx), maternity (lxmx), and reproductive value (vxj) of YPM on different host plants when exposed to 20°C. These findings highlight the need for further research into the complex interactions between temperature, diet, and insect life history traits to develop effective pest management strategies and enhance our understanding of insect ecology in agroecosystems.
This study aims to investigate the effects of the vine of Lonicera japonica Thunb (VLT) and marine-derived Bacillus amyloliquefaciens-9 (BA-9) supplementation on the growth performance, antioxidant capacity, and gut microbiota of goat kids. A total of 32 4-week-old kids were randomly assigned into four groups: a control group (CON), a group supplemented with 0.3% BA-9 (BA-9), a group supplemented with 2% VLT (VLT), and a group supplemented with both 0.3% BA-9 and 2% VLT (MIX). The results indicated that VLT supplementation significantly increased both average daily (P < 0.001) and total weight gain (TWG) (P < 0.001), while BA-9 alone had no significant effect (P > 0.05) on the average daily and TWG. Biomarker analysis of oxidative stress revealed that supplementation of VLT or BA-9 alone enhanced antioxidant capacity. The MIX group showing a higher total antioxidant capacity (T-AOC) compared with the CON, VLT, and BA-9 groups (P < 0.05). Plasma albumin (ALB) levels were significantly increased in the both VLT and BA-9 groups. Microbiota analysis revealed significant differences in α-diversity and β-diversity between the MIX and CON groups, with specific genera such as Prevotellaceae_UCG.004 and Rikenellaceae_RC9_gut_group negatively correlated with average daily gain (ADG), while Alistipes was positively correlated with T-AOC. These findings suggest that the combined supplementation of VLT and BA-9 can significantly enhance growth performance and antioxidant capacity in goat kids by modulating the composition of gut microbiota and reducing oxidative stress.
The rapid and efficient removal of weeds is currently a research hotspot. With the integration of robotics and automation technology into agricultural production, intelligent field-weeding robots have emerged. An overview of the development status of weeding robots based on bibliometric and scientific mapping methods is presented. Two key technologies of weeding robots are summarized, and the research progress of precision-spraying weeding robots, mechanical weeding robots, and thermal weeding robots with laser devices, categorized by weeding method, is reviewed. Finally, a summary and an outlook on the future development trends of intelligent field-weeding robots are provided, aiming to offer a reference for further promoting the development of weeding robots.
Background: Mild behavioral impairment (MBI) in older people refers to a group of syndromes that are characterized primarily by clusters of neuropsychiatric symptoms without severe cognitive impairment, which is a high-risk population for dementia. Patients often experience a variety of symptoms and exhibit high heterogeneity in symptomatology across different individuals. Classifying the psychotic symptom characteristics of MBI patients aids in the implementation of precise interventions for the next steps.
Objectives: To explore the symptom characteristics of older people with MBI and to classify them based on their symptoms.
Methods: Using a multi-stage sampling Methods, the MBI-Checklist was employed to investigate symptom characteristics in 255 older people with MBI from 32 nursing homes in Fujian Province. Latent Class Analysis (LCA) was then employed to categorize these individuals based on their symptom profiles.
Results: The neuropsychiatric symptoms clusters in older people with MBI often present as a combination of lack of motivation and emotional dysregulation, lack of motivation and impulse control disorders, or emotional dysregulation and impulse control disorders; presentation of a single symptom cluster is relatively less common, accounting for 45.49%. Older people with MBI can be divided into 2 latent classes (P < 0.05) based on symptom characteristics. According to the conditional probability of each class, they were named the “high- level group’’ [211 (82.69%)] and the “low-level group’’[44 (17.31%)].
Discussion: As individuals with MBI are at high risk for developing dementia, early intervention can effectively delay or reduce the occurrence of dementia. Future interventions should be personalized based on the specific symptom characteristics of this population.