We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We sought to assess the degree to which environmental risk factors affect CHD prevalence using a case–control study.
Methods:
A hospital-based study was conducted by collecting data from outpatients between January 2016 and January 2021, which included 31 CHD cases and 72 controls from eastern China. Risk ratios were estimated using univariate and multivariate logistic regression models and mediating effect analysis.
Results:
Residential characteristics (usage of cement flooring, odds ratio = 17.04[1.954–148.574], P = 0.01; musty smell, odds ratio = 3.105[1.198–8.051], P = 0.02) and indoor total volatile organic compound levels of participants’ room (odds ratio = 31.846[8.187–123.872, P < 0.001), benzene level (odds ratio = 7.370[2.289–23.726], P = 0.001) increased the risk of CHDs in offspring. And folic acid plays a masking effect, which mitigates the affection of the total volatile organic compound (indirect effect = -0.072[−0.138,-0.033]) and formaldehyde (indirect effect = −0.109[-0.381,-0.006]) levels on the incidence of CHDs. While food intake including milk (odds ratio = 0.396[0.16–0.977], P = 0.044), sea fish (odds ratio = 0.273[0.086–0.867], P = 0.028), and wheat (odds ratio = 0.390[0.154–0.990], P = 0.048) were all protective factors for the occurrence of CHDs. Factors including women reproductive history (history of conception control, odds ratio = 2.648[1.062–6.603], P = 0.037; history of threatened abortion, odds ratio = 2.632[1.005–6.894], P = 0.049; history of dysmenorrhoea (odds ratio = 2.720[1.075–6.878], P = 0.035); sleep status (napping habit during daytime, odds ratio = 0.856[0.355–2.063], P = 0.047; poor sleep quality, odds ratio = 3.180[1.037–9.754], P = 0.043); and work status (working time > 40h weekly, odds ratio = 2.882[1.172–7.086], P = 0.021) also influenced the CHDs incidence to differing degrees.
Conclusion:
Diet habits, nutrients intake, psychological status of pregnant women, and residential air quality were associated with fetal CHDs. Indoor total volatile organic compound content was significantly correlated with CHDs risk, and folic acid may serve as a masking factor that reduce the harmful effects of air pollutants.
Deformation occurs in a thin liquid film when it is subjected to a non-uniform electric field, which is referred to as the electrohydrodynamic patterning. Due to the development of a non-uniform electrical force along the surface, the film would evolve into microstructures/nanostructures. In this work, a linear and a nonlinear model are proposed to thoroughly investigate the steady state (i.e. equilibrium state) of the electrohydrodynamic deformation of thin liquid film. It is found that the deformation is closely dependent on the electric Bond number BoE. Interestingly, when BoE is larger than a critical value, the film would be deformed remarkably and get in contact with the top template. To model the ‘contact’ between the liquid film and the solid template, the disjoining pressure is incorporated into the numerical model. From the nonlinear numerical model, a hysteresis deformation is revealed, i.e. the film may have different equilibrium states depending on whether the voltage is increased or decreased. To analyse the stability of these multiple equilibrium states, the Lyapunov functional is employed to characterise the system’s free energy. According to the Lyapunov functional analysis, at most three equilibrium states can be formed. Among them, one is stable, another is metastable and the third one is unstable. Finally, the model is extended to study the three-dimensional deformation of the electrohydrodynamic patterning.
As a novel type of catalytic Janus micromotor (JM), a double-bubble-powered Janus micromotor has a distinct propulsion mechanism that is closely associated with the bubble coalescence in viscous liquids and corresponding flow physics. Based on high-speed camera and microscopic observation, we provide the first experimental results of the coalescence of two microbubbles near a JM. By performing experiments with a wide range of Ohnesorge numbers, we identify a universal scaling law of bubble coalescence, which shows a cross-over at dimensionless time $\tilde{t}$ = 1 from an inertially limited viscous regime with linear scaling to an inertial regime with 1/2 scaling. Due to the confinement from the nearby solid JM, we observe asymmetric neck growth and find the combined effect of the surface tension and viscosity. The bubble coalescence and detachment can result in a high propulsion speed of ∼0.25 m s−1 for the JM. We further characterise two contributions to the JM’s displacement propelled by the coalescing bubble: the counteraction from the liquid due to bubble deformation and the momentum transfer during bubble detachment. Our findings provide a better understanding of the flow dynamics and transport mechanism in micro- and nano-scale devices like the swimming microrobot and bubble-powered microrocket.
A new fossil of Lycidae, Domipteron gaoi n. gen. n. sp., is described from Miocene Dominican amber. The fossil exhibits a combination of characteristics found in both Calopterini and Eurrhacini. To determine its systematic placement, we conducted phylogenetic analyses based on adult morphological features. Our analyses indicate that the new fossil belongs to Calopterini.
The lift aerodynamic admittances of an airfoil at different angles of attack (AoAs) in turbulent flow are investigated using a combination of theoretical and experimental approaches. Two theoretical one-wavenumber aerodynamic admittances, namely the Sears and Atassi functions, are reviewed and uniformly normalized for comparison with experimental results. In theory, generalized aerodynamic admittances are generated by introducing the spanwise influence into one-wavenumber aerodynamic admittances. The influence of AoA on generalized aerodynamic admittance includes its effect on both the spanwise influence term and one-wavenumber aerodynamic admittances. The experiment indicates that prior to the prestall region, the increase in the spanwise influence factor correlates with the increase in AoA, with the growth rate of the spanwise influence factor likewise accelerating. The Atassi functions demonstrate that the influence of AoA on one-wavenumber aerodynamic admittances is based on the assumption of full correlation in the spanwise direction. Experimental results suggest that one-wavenumber aerodynamic admittances are inapplicable to actual turbulence; however, the Atassi function accurately represents experimental values at the corresponding AoA when taking into account the spanwise effects.
In this study, the propagation behaviour of detonation waves in a channel filled with stratified media is analysed using a detailed chemical reaction model. Two symmetrical layers of non-reactive gas are introduced near the upper and lower walls to encapsulate a stoichiometric premixed H2–air mixture. The effects of gas temperature and molecular weight of the non-reactive layers on the detonation wave’s propagation mode and velocity are examined thoroughly. The results reveal that as the non-reactive gas temperature increases, the detonation wave front transitions from a ‘convex’ to a ‘concave’ shape, accompanied by an increase in wave velocity. Notably, the concave wave front comprises detached shocks, oblique shocks and detonation waves, with the overall wave system propagating at a velocity exceeding the theoretical Chapman–Jouguet speed, indicating the emergence of a strong detonation wave. Furthermore, when the molecular weight of non-reactive layers varies, the results qualitatively align with those obtained from temperature variations. To elucidate the formation mechanism of different detonation wave front shapes, a dimensionless parameter $\eta$ (defined as a function of the specific heat ratio and sound speed) is proposed. This parameter unifies the effects of temperature and molecular weight, confirming that the specific heat ratio and sound speed of non-reactive layers are the primary factors governing the detonation wave propagation mode. Additionally, considering the effect of mixture inhomogeneity on the detonation reaction zone, the stream tube contraction theory is proposed, successfully explaining why strong detonation waves form in stratified mixtures. Numerical results show good agreement with theoretical predictions, validating the proposed model.
Multimorbidity, especially physical–mental multimorbidity, is an emerging global health challenge. However, the characteristics and patterns of physical–mental multimorbidity based on the diagnosis of mental disorders in Chinese adults remain unclear.
Methods
A cross-sectional study was conducted from November 2004 to April 2005 among 13,358 adults (ages 18–65years) residing in Liaoning Province, China, to evaluate the occurrence of physical–mental multimorbidity. Mental disorders were assessed using the Composite International Diagnostic Interview (version 1.0) with reference to the Diagnostic and Statistical Manual of Mental Disorders (3rd Edition Revised), while physical diseases were self-reported. Physical–mental multimorbidity was assessed based on a list of 16 physical and mental morbidities with prevalence ≥1% and was defined as the presence of one mental disorder and one physical disease. The chi-square test was used to calculate differences in the prevalence and comorbidity of different diseases between the sexes. A matrix heat map was generated of the absolute number of comorbidities for each disease. To identify complex associations and potential disease clustering patterns, a network analysis was performed, constructing a network to explore the relationships within and between various mental disorders and physical diseases.
Results
Physical–mental multimorbidity was confirmed in 3.7% (498) of the participants, with a higher prevalence among women (4.2%, 282) than men (3.3%, 216). The top three diseases with the highest comorbidity rate and average number of comorbidities were dysphoric mood (86.3%; 2.86), social anxiety disorder (77.8%; 2.78) and major depressive disorder (77.1%; 2.53). A physical–mental multimorbidity network was visually divided into mental and physical domains. Additionally, four distinct multimorbidity patterns were identified: ‘Affective-addiction’, ‘Anxiety’, ‘Cardiometabolic’ and ‘Gastro-musculoskeletal-respiratory’, with the digestive-respiratory-musculoskeletal pattern being the most common among the total sample. The affective-addiction pattern was more prevalent in men and rural populations. The cardiometabolic pattern was more common in urban populations.
Conclusions
The physical–mental multimorbidity network structure and the four patterns identified in this study align with previous research, though we observed notable differences in the proportion of these patterns. These variations highlight the importance of tailored interventions that address specific multimorbidity patterns while maintaining broader applicability to diverse populations.
where $c_+$ and $c_-$ are two positive constants. It is shown that the solution of the step-like initial problem can be characterised via the solution of a matrix Riemann–Hilbert (RH) problem in the new scale $(y,t)$. A double coordinate $(\xi, c)$ with $c=c_+/c_-$ is adopted to divide the half-plane $\{ (\xi, c)\,:\, \xi \in \mathbb{R}, \ c\gt 0, \ \xi =y/t\}$ into four asymptotic regions. Further applying the Deift–Zhou steepest descent method, we derive the long-time asymptotic expansions of the solution $u(y,t)$ in different space-time regions with appropriate g-functions. The corresponding leading asymptotic approximations are given with the slow/fast decay step-like background wave in genus-0 regions and elliptic waves in genus-2 regions. The second term of the asymptotics is characterised by the Airy function or parabolic cylinder model. Their residual error order is $\mathcal{O}(t^{-2})$ or $\mathcal{O}(t^{-1})$, respectively.
Perceived intergenerational mobility profoundly influences individual attitudes and behaviour, carrying important implications for social stability and development. How do Chinese citizens perceive the intergenerational persistence of family advantages, and how do these perceptions compare with reality? This study conducts multiple randomized vignette experiments across two online surveys to assess public perceptions of correlations between various socio-economic indicators of parents and their children. Respondents estimate moderate to moderately strong correlations across generations. By leveraging the comparability of perceptions and objective estimates made possible by our novel measurement instrument, we find that respondents often overestimate the likelihood of equal opportunities for children from families with differing educational backgrounds. Alongside these largely optimistic perceptions, we also uncover signs of emerging pessimism. These results offer a nuanced snapshot of perceived social mobility in China, highlighting its multidimensional manifestations and divergence from reality, while also providing methodological insights for future research on its evolving dynamics.
Predicting healthcare costs for chronic diseases is challenging for actuaries, as these costs depend not only on traditional risk factors but also on patients’ self-perception and treatment behaviors. To address this complexity and the unobserved heterogeneity in cost data, we propose a dual-structured learning statistical framework that integrates covariate clustering into finite mixture of generalized linear models, effectively handling high-dimensional, sparse, and highly correlated covariates while capturing their effects on specific subgroups. Specifically, this framework is realized by imposing a penalty on the prior similarities among covariates, and we further propose an expectation-maximization-alternating direction method of multipliers (EM-ADMM) algorithm to address the complex optimization problem by combining EM with the ADMM. This paper validates the stability and effectiveness of the framework through simulation and empirical studies. The results show that our framework can leverage shared information among high-dimensional covariates to enhance fitting and prediction accuracy, while covariate clustering can also uncover the covariates’ network relationships, providing valuable insights into diabetic patients’ self-perception data.
Triceps skinfold thickness (TSF) is a surrogate marker of subcutaneous fat. Evidence is limited about the association of sex-specific TSF with the risk of all-cause mortality among maintenance hemodialysis (MHD) patients. We aimed to investigate the longitudinal relationship of TSF with all-cause mortality among MHD patients. A multicenter prospective cohort study was performed in 1034 patients undergoing MHD. The primary outcome was all-cause mortality. Multivariable Cox proportional hazards models were used to evaluate the association of TSF with the risk of mortality. The mean (standard deviation) age of the study population was 54.1 (15.1) years. 599 (57.9%) of the participants were male. The median (interquartile range) of TSF was 9.7 (6.3–13.3 mm) in males and 12.7 (10.0–18.0 mm) in females. Over a median follow up of 4.4 years (interquartile range, 2.4-7.9 years), there were 548 (53.0%) deaths. When TSF was assessed as sex-specific quartiles, compared with those in quartile 1, the adjusted HRs (95%CIs) of all-cause mortality in quartile 2, quartile 3 and quartile 4 were 0.93 (0.73, 1.19), 0.75 (0.58, 0.97) and 0.69 (0.52, 0.92), respectively (P for trend =0.005). Moreover, when analyzed by sex, increased TSF (≥9.7 mm for males and ≥18mm for females) was significantly associated with a reduced risk of all-cause mortality (quartile 3-4 vs. quartile 1-2; HR, 0.70; 95%CI: 0.55, 0.90 in males; quartile 4 vs. Quartile 1-3; HR, 0.69; 95%CI: 0.48, 1.00 in females). In conclusion, high TSF was significantly associated with lower risk of all-cause mortality in MHD patients.
We conducted a series of pore-scale numerical simulations on convective flow in porous media, with a fixed Schmidt number of 400 and a wide range of Rayleigh numbers. The porous media are modeled using regularly arranged square obstacles in a Rayleigh–Bénard (RB) system. As the Rayleigh number increases, the flow transitions from a Darcy-type regime to an RB-type regime, with the corresponding $Sh$–$Ra_D$ relationship shifting from sublinear scaling to the classical 0.3 scaling of RB convection. Here, $Sh$ and $Ra_D$ represent the Sherwood number and the Rayleigh–Darcy number, respectively. For different porosities, the transition begins at approximately $Ra_D = 4000$, at which point the characteristic horizontal scale of the flow field is comparable to the size of a single obstacle unit. When the thickness of the concentration boundary layer is less than approximately one-sixth of the pore spacing, the flow finally enters the RB regime. In the Darcy regime, the scaling exponent of $Sh$ and $Ra_D$ decreases as porosity increases. Based on the Grossman–Lohse theory (J. Fluid Mech. vol. 407, 2000, pp. 27–56; Phys. Rev. Lett. vol. 86, 2001, p. 3316), we provide an explanation for the scaling laws in each regime and highlight the significant impact of mechanical dispersion effects during the development of the plumes. Our findings provide some new insights into the validity range of the Darcy model.
This paper is focused on the existence and uniqueness of nonconstant steady states in a reaction–diffusion–ODE system, which models the predator–prey interaction with Holling-II functional response. Firstly, we aim to study the occurrence of regular stationary solutions through the application of bifurcation theory. Subsequently, by a generalized mountain pass lemma, we successfully demonstrate the existence of steady states with jump discontinuity. Furthermore, the structure of stationary solutions within a one-dimensional domain is investigated and a variety of steady-state solutions are built, which may exhibit monotonicity or symmetry. In the end, we create heterogeneous equilibrium states close to a constant equilibrium state using bifurcation theory and examine their stability.
This study delves into the intricate relationship between chief executive officers' (CEOs') experiences of poverty and the digital transformation of their firms. Employing comprehensive data collection on CEOs' birthplaces and leveraging advanced text analytics to quantify digitalization, our analysis encompasses a wide array of listed companies in China. The findings reveal that CEOs' impoverished experiences exert a detrimental influence on their firms' digital transformation efforts, primarily due to a lack of motivation and social resources necessary for such initiatives. However, this adverse effect can be ameliorated when CEOs gain access to substantial social resources in later life. Our conclusions are robust, supported by rigorous testing, and underscore not only the impact of CEOs' early-life poverty on corporate digitalization but also the potential for overcoming these challenges through the acquisition of external social resources and connections in adulthood. This study contributes significantly to existing literature and offers practical implications for enhancing corporate digital transformation strategies.
In response to the requirements for assessing the impact safety of aero-engines, a high-fidelity numerical simulation method based on overset mesh technology for six-degree-of-freedom rigid body motion is proposed. A gas-solid two-phase flow model is established, coupling two types of ice-debris (externally ingested ice and internally delaminated ice) with air, to analyse their behaviour in a dorsal S-shaped inlet with a diffusion ratio of 1.3. Results indicate that the ice-debris entering from the upper region of the entrance section exerts the most significant distortion on the total-pressure at the engine inlet. Additionally, the behaviour of ice-debris is determined by its angle with respect to the incoming flow direction and the shape of ice. Furthermore, although the ice-debris detached from the entrance section poses no immediate threat to the engine, the prolonged acceleration by high-speed airflow, with velocity increments exceeding 45 m/s, results in a higher kinetic energy carried upon impact with the inlet walls. Regarding externally ingested ice-debris, a smaller initial velocity corresponds to a higher probability of impacting the engine, accompanied by a significant increase in velocity. For instance, the irregular ice-debris ingested at an initial velocity of 6 m/s can experience velocity amplification exceeding 590%.
This paper presents detailed analyses of the Reynolds stresses and their budgets in temporally evolving stratified wakes using direct numerical simulation. Ensemble averaging is employed to mitigate statistical errors in the data, and the results are presented as functions of both the transverse and vertical coordinates – at time instants across the near-wake, non-equilibrium, and quasi-two-dimensional regimes for wakes in weakly and strongly stratified environments. Key findings include the identification of dominant terms in the Reynolds stress transport equations and their spatial structures, the generation and destruction processes of the Reynolds stresses, and the energy transfer between the Reynolds stress and the mean flow. The study also clarifies the effects of the Reynolds number and the Froude number. Additionally, we assess the validity of the eddy-viscosity type models and some existing closures for the Reynolds stress model, highlighting the limitations of isotropy and return-to-isotropy hypotheses in stratified flows.
Mapping reviews (MRs) are crucial for identifying research gaps and enhancing evidence utilization. Despite their increasing use in health and social sciences, inconsistencies persist in both their conceptualization and reporting. This study aims to clarify the conceptual framework and gather reporting items from existing guidance and methodological studies. A comprehensive search was conducted across nine databases and 11 institutional websites, including documents up to January 2024. A total of 68 documents were included, addressing 24 MR terms and 55 definitions, with 39 documents discussing distinctions and overlaps among these terms. From the documents included, 28 reporting items were identified, covering all the steps of the process. Seven documents mentioned reporting on the title, four on the abstract, and 14 on the background. Ten methods-related items appeared in 56 documents, with the median number of documents supporting each item being 34 (interquartile range [IQR]: 27, 39). Four results-related items were mentioned in 18 documents (median: 14.5, IQR: 11.5, 16), and four discussion-related items appeared in 25 documents (median: 5.5, IQR: 3, 13). There was very little guidance about reporting conclusions, acknowledgments, author contributions, declarations of interest, and funding sources. This study proposes a draft 28-item reporting checklist for MRs and has identified terminologies and concepts used to describe MRs. These findings will first be used to inform a Delphi consensus process to develop reporting guidelines for MRs. Additionally, the checklist and definitions could be used to guide researchers in reporting high-quality MRs.
Patients with chronic insomnia are characterized by alterations in default mode network and alpha oscillations, for which the medial parietal cortex (MPC) is a key node and thus a potential target for interventions.
Methods
Fifty-six adults with chronic insomnia were randomly assigned to 2 mA, alpha-frequency (10 Hz), 30 min active or sham transcranial alternating current stimulation (tACS) applied over the MPC for 10 sessions completed within two weeks, followed by 4- and 6-week visits. The connectivity of the dorsal and ventral posterior cingulate cortex (vPCC) was calculated based on resting functional MRI.
Results
For the primary outcome, the active group showed a higher response rate (≥ 50% reduction in Pittsburgh Sleep Quality Index (PSQI)) at week 6 than that of the sham group (71.4% versus 3.6%) (risk ratio 20.0, 95% confidence interval 2.9 to 139.0, p = 0.0025). For the secondary outcomes, the active therapy induced greater and sustained improvements (versus sham) in the PSQI, depression (17-item Hamilton Depression Rating Scale), anxiety (Hamilton Anxiety Rating Scale), and cognitive deficits (Perceived Deficits Questionnaire-Depression) scores. The response rates in the active group decreased at weeks 8–14 (42.9%–57.1%). Improvement in sleep was associated with connectivity between the vPCC and the superior frontal gyrus and the inferior parietal lobe, whereas vPCC-to-middle frontal gyrus connectivity was associated with cognitive benefits and vPCC-to-ventromedial prefrontal cortex connectivity was associated with alleviation in rumination.
Conclusions
Targeting the MPC with alpha-tACS appears to be an effective treatment for chronic insomnia, and vPCC connectivity represents a prognostic marker of treatment outcome.