We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To realise the overall calibration of the error model coefficients of accelerometers in an inertial combination and to improve the navigation accuracy of the inertial navigation system, a norm-observation method is applied to the calibration, especially for the quadratic coefficient of the accelerometer. The Taylor formula is used to expand the solution of the acceleration model, and the intermediate variables with error model coefficients are obtained using the least square method. The formulas for calculating the quadratic term coefficient, scale factor and bias of the accelerometer are given. A 20-position method is designed to calibrate the accelerometer combination, the effectiveness of the method is verified by simulation, and the effects of installation misalignment and rod-arm error on calibration accuracy are analysed. The results show that the installation misalignments and rod-arm errors have little influence on the coefficient calibration, less than 10−8, and can be neglected in a practical calibration process.
Glaciers play a crucial role in the Asian Water Tower, underscoring the necessity of accurately assessing their mass balance and ice volume to evaluate their significance as sustainable freshwater resources. In this study, we analyzed ground-penetrating radar (GPR) measurements from a 2020 survey of the Xiao Dongkemadi Glacier (XDG) to determine ice thickness, and we extended the glacier’s volume-change record to 2020 by employing multi-source remote-sensing data. Our findings show that the GPR-derived mean ice thickness of XDG in 2020 was 54.78 ± 3.69 m, corresponding to an ice volume of 0.0811 ± 0.0056 km3. From 1969 to 2020, the geodetic mass balance was −0.19 ± 0.02 m w.e. a−1, and the glacier experienced area and ice volume losses of 16.38 ± 4.66% and 31.01 ± 4.59%, respectively. The long-term mass-balance reconstruction reveals weak fluctuations occurred from 1967 to 1993 and that overall mass losses have occurred since 1994. This ongoing shrinkage and ice loss are mainly associated with the temperature increases in the warm season since the 1960s. If the climate trend across the central Tibetan Plateau follows to the SSP585 scenario, then XDG is at risk of disappearing by the end of the century.
Er:CaF2 crystals are crucial gain media for producing 3 μm mid-infrared (MIR) lasers pumped by 976 nm continuous-wave (CW) lasers owing to their low phonon energy and high conversion efficiency. This study investigated the damage characteristics and mechanism of Er:CaF2 crystals irradiated with a 976 nm CW laser. The laser-induced damage threshold of Er:CaF2 crystals with different Er3+ doping levels was tested; the damage morphology consists of a series of regular 70° cracks related to the angle of the crystal slip system on the surface. A finite-element model was used to calculate the temperature and stress fields of the crystals. The results indicated that the damage can be attributed to surface tensile stresses caused by the temperature gradient, and crystals with higher doping concentrations were more susceptible to damage owing to stronger light absorption. These findings provide valuable insights into the development of high-power MIR lasers.
Increases in population size are associated with the adoption of Neolithic agricultural practices in many areas of the world, but rapid population growth within the Dingsishan cultural group of southern China pre-dated the arrival of rice and millet farming in this area. In this article, the authors identify starch grains from taros (Colocasia) and yams (Dioscorea) in dental calculus and on food-processing tools from the Dingsishan sites of Huiyaotian and Liyupo (c. 9030–6741 BP). They conclude that the harvesting and processing of these dietary staples supported an Early Holocene population increase in southern East Asia, before the spread of rice and millet farming.
Caused by multiple risk factors, heavy burden of major depressive disorder (MDD) poses serious challenges to public health worldwide over the past 30 years. Yet the burden and attributable risk factors of MDD were not systematically known. We aimed to reveal the long-term spatio-temporal trends in the burden and attributable risk factors of MDD at global, regional and national levels during 1990–2019.
Methods
We obtained MDD and attributable risk factors data from Global Burden of Disease Study 2019. We used joinpoint regression model to assess the temporal trend in MDD burden, and age–period–cohort model to measure the effects of age, period and birth cohort on MDD incidence rate. We utilized population attributable fractions (PAFs) to estimate the specific proportions of MDD burden attributed to given risk factors.
Results
During 1990–2019, the global number of MDD incident cases, prevalent cases and disability-adjusted life years (DALYs) increased by 59.10%, 59.57% and 58.57%, respectively. Whereas the global age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR) and age-standardized DALYs rate (ASDR) of MDD decreased during 1990–2019. The ASIR, ASPR and ASDR in women were 1.62, 1.62 and 1.60 times as that in men in 2019, respectively. The highest age-specific incidence, prevalence and DALYs rate occurred at the age of 60–64 in women, and at the age of 75–84 in men, but the maximum increasing trends in these age-specific rates occurred at the age of 5–9. Population living during 2000–2004 had higher risk of MDD. MDD burden varied by socio-demographic index (SDI), regions and nations. In 2019, low-SDI region, Central sub-Saharan Africa and Uganda had the highest ASIR, ASPR and ASDR. The global PAFs of intimate partner violence (IPV), childhood sexual abuse (CSA) and bullying victimization (BV) were 8.43%, 5.46% and 4.86% in 2019, respectively.
Conclusions
Over the past 30 years, the global ASIR, ASPR and ASDR of MDD had decreased trends, while the burden of MDD was still serious, and multiple disparities in MDD burden remarkably existed. Women, elderly and populations living during 2000–2004 and in low-SDI regions, had more severe burden of MDD. Children were more susceptible to MDD. Up to 18.75% of global MDD burden would be eliminated through early preventing against IPV, CSA and BV. Tailored strategies-and-measures in different regions and demographic groups based on findings in this studywould be urgently needed to eliminate the impacts of modifiable risk factors on MDD, and then mitigate the burden of MDD.
Few studies have evaluated the joint effect of trace elements on spontaneous preterm birth (SPTB). This study aimed to examine the relationships between the individual or mixed maternal serum concentrations of Fe, Cu, Zn, Se, Sr and Mo during pregnancy, and risk of SPTB. Inductively coupled plasma MS was employed to determine maternal serum concentrations of the six trace elements in 192 cases with SPTB and 282 controls with full-term delivery. Multivariate logistic regression, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) were used to evaluate the individual and joint effects of trace elements on SPTB. The median concentrations of Sr and Mo were significantly higher in controls than in SPTB group (P < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted OR (aOR) of 0·432 (95 CI < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted aOR of 0·432 (95 % CI 0·247, 0·756), 0·386 (95 % CI 0·213, 0·701), 0·512 (95 % CI 0·297, 0·883) and 0·559 (95 % CI 0·321, 0·972), respectively. WQSR revealed the inverse combined effect of the trace elements mixture on SPTB (aOR = 0·368, 95 % CI 0·228, 0·593). BKMR analysis confirmed the overall mixture of the trace elements was inversely associated with the risk of SPTB, and the independent effect of Sr and Mo was significant. Our findings suggest that the risk of SPTB decreased with concentrations of the six trace elements, with Sr and Mo being the major contributors.
During the early stages of human pregnancy, successful implantation of embryonic trophoblast cells into the endometrium depends on good communication between trophoblast cells and the endometrium. Abnormal trophoblast cell function can cause embryo implantation failure. In this study, we added cyclosporine A (CsA) to the culture medium to observe the effect of CsA on embryonic trophoblast cells and the related mechanism. We observed that CsA promoted the migration and invasion of embryonic trophoblast cells. CsA promoted the expression of leukaemic inhibitory factor (LIF) and fibroblast growth factor (FGF). In addition, CsA promoted the secretion and volume increase in vesicles in the CsA-treated group compared with the control group. Therefore, CsA may promote the adhesion and invasion of trophoblast cells through LIF and FGF and promote the vesicle dynamic process, which is conducive to embryo implantation.
The objective of this study was to understand and measure epigenetic changes associated with the occurrence of CHDs by utilizing the discordant monozygotic twin model. A unique set of monozygotic twins discordant for double-outlet right ventricles (DORVs) was used for this multiomics study. The cardiac and muscle tissue samples from the twins were subjected to whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and liquid chromatography-tandem mass spectrometry analysis. Sporadic DORV cases and control fetuses were used for validation. Global hypomethylation status was observed in heart tissue samples from the affected twins. Among 36,228 differentially methylated regions (DMRs), 1097 DMRs involving 1039 genes were located in promoter regions. A total of 419 genes, and lncRNA–mRNA pairs involved 30 genes, and 62 proteins were significantly differentially expressed. Multiple omics integrative analysis revealed that five genes, including BGN, COL1A1, COL3A1, FBLN5, and FLAN, and three pathways, including ECM-receptor interaction, focal adhesion and TGF-β signaling pathway, exhibited differences at all three levels. This study demonstrates a multiomics profile of discordant twins and explores the possible mechanism of DORV development. Global hypomethylation might be associated with the risk of CHDs. Specific genes and specific pathways, particularly those involving ECM–receptor interaction, focal adhesion and TGF–β signaling, might be involved in the occurrence of CHDs.
The language-guided visual robotic grasping task focuses on enabling robots to grasp objects based on human language instructions. However, real-world human-robot collaboration tasks often involve situations with ambiguous language instructions and complex scenarios. These challenges arise in the understanding of linguistic queries, discrimination of key concepts in visual and language information, and generation of executable grasping configurations for the robot’s end-effector. To overcome these challenges, we propose a novel multi-modal transformer-based framework in this study, which assists robots in localizing spatial interactions of objects using text queries and visual sensing. This framework facilitates object grasping in accordance with human instructions. Our developed framework consists of two main components. First, a visual-linguistic transformer encoder is employed to model multi-modal interactions for objects referred to in the text. Second, the framework performs joint spatial localization and grasping. Extensive ablation studies have been conducted on multiple datasets to evaluate the advantages of each component in our model. Additionally, physical experiments have been performed with natural language-driven human-robot interactions on a physical robot to validate the practicality of our approach.
Since the 18th National Congress of the Chinese Communist Party in November 2012, the Party school system has been subject to several reforms. How well these reforms have been implemented in lower-level Party schools has received little attention because access is difficult to obtain. We conducted on-site investigations, interviews with cadres and surveys of trainees at a county/district-level Party school in an economically typical city and county. Our findings show that operational dilemmas lead to the perfunctory implementation of policy that is substantively deficient. These operational dilemmas are likely to be found in varying degrees in other county/district Party schools. Our finding that cadre education and training policy is implemented in a pro forma manner suggests that cadres may not be receiving the ideological education and practical training intended for them by the centre.
The lift generation mechanism of leading-edge vortex (LEV) in the case of a pitching and plunging plate is studied using an experimental approach and the improved discrete vortex method in this research. A formation condition of the secondary structure is introduced into the traditional discrete vortex method to compensate for the shortcomings in the simulation of the viscous effect between LEV and plate. The simulation of the secondary structure helps the improved method perform better in flow-field reconstruction and lift prediction. Accordingly, the lift generation mechanism of the LEV and influence of the secondary structure are studied. The lift contribution of the vortex structure is isolated and linearly decomposed into two parts according to sources of flow field: the quasi-potential flow part and the vortex-induced flow part. The vortex lift is defined as the lift contribution of the vortex structure in vortex-induced flow, which gives a new insight into the production of lift of the LEV. The lift generation mechanism through the discrete vortex method is verified and extended in viscous flow through experimental measurement. In addition, a vortex lift indicator based on the reverse flow of the LEV is proposed to examine the change of vortex lift in experimental measurement. The flow mechanism for the decline of vortex lift for different maximum effective angles of attack is revealed based on the vortex lift indicator. Furthermore, for the LEV-dominating flow, the indicator can also be applied in estimating the maximum value and corresponding critical time of overall lift in experiments.
Longitudinal studies on the variations of phenotypic and genotypic characteristics of K. pneumoniae across two decades are rare. We aimed to determine the antimicrobial susceptibility and virulence factors for K. pneumoniae isolated from patients with bacteraemia or urinary tract infection (UTI) from 1999 to 2022. A total of 699 and 1,267 K. pneumoniae isolates were isolated from bacteraemia and UTI patients, respectively, and their susceptibility to twenty antibiotics was determined; PCR was used to identify capsular serotypes and virulence-associated genes. K64 and K1 serotypes were most frequently observed in UTI and bacteraemia, respectively, with an increasing frequency of K20, K47, and K64 observed in recent years. entB and wabG predominated across all isolates and serotypes; the least frequent virulence gene was htrA. Most isolates were susceptible to carbapenems, amikacin, tigecycline, and colistin, with the exception of K20, K47, and K64 where resistance was widespread. The highest average number of virulence genes was observed in K1, followed by K2, K20, and K5 isolates, which suggest their contribution to the high virulence of K1. In conclusion, we found that the distribution of antimicrobial susceptibility, virulence gene profiles, and capsular types of K. pneumoniae over two decades were associated with their clinical source.
The resurgence and outbreaks of mumps occur frequently in many countries worldwide in recent years, even in countries with high vaccination coverage. In this study, a descriptive and spatiotemporal clustering analysis at the township level was conducted to explore the dynamic spatiotemporal aggregation and epidemiological characteristics of mumps in Wuhan. During 2005 and 2019, there were 40 685 cases reported in Wuhan, with an average annual morbidity of 28.11 per 100 000 populations. The morbidity showed a fluctuating tendency, and peaked in 2010 and 2018. Bimodal seasonality was found, with a large peak between May and July, and a mild peak from November to January in the following year. Male students aged 5–9-year-old were the main risk group of mumps infection. Significant global spatial auto-correlation was detected except in 2007, 2009 and 2015. The spatial and temporal scan statistics indicated that the hot-spots mainly located at the western and southern areas of Wuhan with variations almost every year. Our findings could assist the public health authorities to develop and improve targeted health strategies, and allocate health resources rationally.
In order to decrease the influence of system parameters and load on the dynamic performance of permanent magnet synchronous motor (PMSM) in cooperative robot joint modules, a practical model-based robust control method was proposed. It inherits the traditional proportional-integral-derivative (PID) control and robust control based on error and model-based control. We first set up the nominal controller using the dynamics model. In order to limit the influence of uncertainty on dynamic performance, a robust controller is established based on Lyapunov method. The control can be regarded as an improved PID control or a redesigned robust control. Compared with the traditional control method, it is simple to implement and has practical effects. It is proved by theoretical analysis that the controller can guarantee the uniform boundedness and uniform final boundedness of the system. In addition, the prototype of fast controller cSPACE is built on the experiment platform, which averts long-time programming and debugging. It offers immense convenience for practical operation. Finally, numerical simulation and real-time experiment results are presented. Based on cSPACE and a PMSM in the joint module of a practical cooperative robot, the availability of the control design and the achievable control performance are verified.
Obsessive-compulsive disorder (OCD) can cause substantial damage to quality of life. Continuous theta burst stimulation (cTBS) is a promising treatment for OCD patients with the advantages of safety and noninvasiveness.
Objective
The present study aimed to evaluate the treatment efficacy of cTBS over the bilateral supplementary motor area (SMA) for OCD patients with a single-blind, sham-controlled design.
Methods
Fifty-four OCD patients were randomized to receive active or sham cTBS treatment over the bilateral SMA for 4 weeks (five sessions per week, 20 sessions in total). Patients were assessed at baseline (week 0), the end of treatment (week 4), and follow-up (week 8). Clinical scales included the YBOCS, HAMD24, HAMA14, and OBQ44. Three behavioral tests were also conducted to explore the effect of cTBS on response inhibition and decision-making in OCD patients.
Results
The treatment response rates were not significantly different between the two groups at week 4 (active: 23.1% vs. sham: 16.7%, p = 0.571) and week 8 (active: 26.9% vs. sham: 16.7%, p = 0.382). Depression and anxiety improvements were significantly different between the two groups at week 4 (HAMD24: F = 4.644, p = 0.037; HAMA14: F = 5.219, p = 0.028). There was no significant difference between the two groups in the performance of three behavioral tests. The treatment satisfaction and dropout rates were not significantly different between the two groups.
Conclusions
The treatment of cTBS over the bilateral SMA was safe and tolerable, and it could significantly improve the depression and anxiety of OCD patients but was not enough to improve OCD symptoms in this study.
Temporal constraints on the closure of the eastern segment of the Palaeo-Asian Ocean along the northern margin of the North China Craton (NCC) remain unclear. As a part of the NCC, the sedimentation and tectonic evolution of the Late Palaeozoic Ordos Basin were closely related to the opening and closing of the Palaeo-Asian Ocean. We use petrology, quantitative mineralogical analysis, U–Pb geochronology and trace element signatures of detrital zircons of the Lower Shihezi Formation from two sections in the eastern north Ordos Basin and two sections in the western north Ordos Basin to reconstruct the sedimentary provenance and tectonic background of the northern Ordos Basin. The results show that the sediments of the western sections were mainly derived from the Yinshan orogenic belt and Alxa block, and that those in the eastern sections only came from the Yinshan orogenic belt. The trace element ratios in detrital zircons from the Late Palaeozoic sandstones indicate that the source areas were mainly subduction-related continental arcs, closely related to the continued subduction of the Palaeo-Asian Ocean in the Late Palaeozoic. Since the main Late Palaeozoic magmatic periods vary on the east and west sides of the northern margin of the Ordos Basin, two main collisions related to Palaeo-Asian Ocean closure are recorded. The collision on the west side occurred significantly earlier than that in the east. This study implies that the Palaeo-Asian Ocean began to subduct beneath the NCC in the Carboniferous and gradually closed from west to east thereafter.
To address the shortcomings of existing methods for rotorcraft searching, positioning, tracking and landing on a ship at sea, a dual-channel LIDAR searching, positioning, tracking and landing system (DCLSPTLS) is proposed in this paper, which utilises the multi-pulse laser echoes accumulation method and the physical phenomenon that the laser reflectivity of the ship deck in the near-infrared band is four orders of magnitude higher than that of the sea surface. The DCLSPTLS searching and positioning model, tracking model and landing model are established, respectively. The searching and positioning model can provide estimates of the azimuth angle, the distance of the ship relative to the rotorcraft and the ship's course. With the above parameters as inputs, the total tracking time and the direction of the rotorcraft tracking speed can be obtained by using the tracking model. The landing model can calculate the pitch and the roll angles of the ship's deck relative to the rotorcraft by using the least squares method and the laser irradiation coordinates. The simulation shows that the DCLSPTLS can realise the functions of rotorcraft searching, positioning, tracking and landing by using the above parameters. To verify the effectiveness of the DCLSPTLS, a functional test is performed using a rotorcraft and a model ship on a lake. The test results are consistent with the results of the simulation.
The complex sea ice conditions in Arctic waters has different impacts on the legs of the Arctic passage, and ships of specific ice classes face different navigation risks. Therefore, the quantitative analysis of the navigation risks faced in different legs has important practical significance. Based on the POLARIS introduced by IMO, the sea ice condition data from 2011 to 2020 was used to quantify the navigation risk of the Arctic Northeast passage. The risk index outcome (RIO) of the Arctic Northeast Passage were calculated. The navigable windows of the route for ice class 1A ships sailing independently under different sea ice conditions in the last decade were determined, with a navigable period of 91 days under normal sea ice conditions, approximately 175 days under light sea ice conditions and only week 40 close to navigation under severe sea ice conditions. The three critical waters affecting the safety of ships were identified. Combined with the navigable windows and critical waters, recommendations on ship's navigation and manipulation and recommendations for stakeholders were given. The method and results provided reference and support for the assessment of the navigation risk of ships in the Northeast Passage and safety navigation and operations of ships, and satisfied the needs of relevant countries and enterprises to rationally arrange shipment dates and sailing plans based on different ice classes of ships.
Pyroptosis is a recently identified mechanism of programmed cell death related to Caspase-1 that triggers a series of inflammatory reactions by releasing several proinflammatory factors such as IL-1β and IL-18. The process is characterised by the rupture of cell membranes and the release of cell contents through the mediation of gasdermin (GSDM) proteins. GSDMD is an important member of the GSDM family and plays a critical role in the two pathways of pyroptosis. Diabetic nephropathy (DN) is a microvascular complication of diabetes and a major cause of end-stage renal disease. Recently, it was revealed that GSDMD-mediated pyroptosis plays an important role in the occurrence and development of DN. In this review, we focus on two types of kidney cells, tubular epithelial cells and renal podocytes, to illustrate the mechanism of pyroptosis in DN and provide new ideas for the prevention, early diagnosis and molecular therapy of DN.