We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
The effect of hydrodynamic interactions on the collective locomotion of fish schools is still poorly understood. In this paper, the flow-mediated organization of two tandem flapping foils, which are free in both the longitudinal and lateral directions, is numerically studied. It is found that the tandem formation is unstable for two foils when they can self-propel in both the longitudinal and lateral directions. Three types of resultant regular formations are observed, i.e. semi-tandem formation, staggered formation and transitional formation. Which type of regular formation occurs depends on the flapping parameters and the initial longitudinal distance between the two foils. Moreover, there is a threshold value of the cycle-averaged longitudinal distance (which is approximately 0.55) below which both velocity enhancement and efficiency augmentation can be achieved by two foils in regular formations. The results obtained here may shed some light on understanding the emergence of regular formations of fish schools.
Fish schools and bird flocks, which involve a variety of orderly formations, have fascinated people for a long time. The collective performance of two flapping foils in parallel, which can self-propel in both lateral and longitudinal directions, is numerically studied through two-dimensional simulations in this paper. For the first time it is numerically confirmed that two flapping swimmers can simultaneously converge to equilibrium distances in both lateral and longitudinal directions. Two types of stable formations have been observed and which type occurs depends on the phase difference between two foils. The staggered formation appears in the in-phase scenario, and the side-by-side formation occurs in the anti-phase scenario. Moreover, both types of the stable formations strongly depend on the flapping frequency and amplitude, but are independent of the perturbation of the initial distance between the two foils when the perturbation is small. In addition, considerable velocity enhancement can be achieved by two foils in all of the stable formations, as compared with that of a single foil. Moreover, the velocity of the two-foil system can be couched as a specific scaling law, which is determined by the type of the stable formations. Finally, the mechanism behind the stable formations has been analysed. The results obtained here may shed some light on the understanding of collective behaviour of fish schools and bird flocks.
Mutation in CFAP43 leads to severe asthenozoospermia and multiple morphological abnormalities of the sperm flagellum (MMAF) in both human and mouse. Previous studies have shown that disruption of intra-manchette transport (IMT) caused failure of flagellum assembly and sperm head shaping. In a previous study, therefore, we postulated that disruption of IMT may contribute to the failure of sperm flagellum formation and result in MMAF, however the mechanisms underlying these defects are still poorly understood. Cfap43-deficient mice were studied here to reveal the cellular mechanisms of abnormal sperm head morphology and MMAF. Depletion of Cfap43 led to abnormal spermiogenesis and caused MMAF, sperm head abnormality and oligozoospermia. Furthermore, both abnormal manchette and disorganized ectoplasmic specialization (ES) could be observed at the elongated spermatids in Cfap43-deficient mice. Therefore, our findings demonstrated that, in mice, CFAP43-mediated IMT is essential for sperm head shaping and sperm flagellum formation.
The collective hydrodynamics in fish schools and bird flocks, which includes self-organization of multiple dynamic bodies, is complex and lacks sufficient exploration. In this paper, we study the performance of multiple self-propelled foils in tandem formation, whose flapping motions are asynchronous with a phase difference. It is shown that a compact formation, in which all of the foils perform like a complete anguilliform swimmer, can be spontaneously formed by multiple foils via hydrodynamic interactions. Both velocity enhancement and energy saving can be achieved by multiple foils in anguilliform-like swimming. Furthermore, such anguilliform-like swimming behaviour can be observed over a wide range of parameters, including the number of foils, the phase difference, the initial distance, the heaving amplitude and the pitching amplitude. The results obtained here may provide some light on understanding the self-organization behaviour of biological collectives.
The East Kunlun Orogen (EKO) is the NW part of the Central China Orogenic Belt, which records the evolutionary history of the Proto- and Palaeo-Tethys Oceans from the Cambrian to the Triassic. An Early Palaeozoic eclogite belt has been recognized in recent years, which extends discontinuously for ∼500 km as three eclogite-bearing terranes. In this study, we report an integrated study of zircon grains from mica-schists accompanying the eclogites, in terms of mineral inclusions, U–Pb age systematics and P–T conditions. The presence of coesite is identified, as inclusions within the metamorphic domain of zircons, which provides unambiguous evidence for subducted terrigenous clastic rocks of the Proto-Tethys Ocean exhumed from coesite-forming depths. U–Pb dating of the metamorphic zircons yields a concordia age of 426.5 ± 0.88 Ma, which is likely to be the time of ultrahigh-pressure metamorphism in the Kehete terrane. P–T calculations suggest that metapelite may have experienced a clockwise P–T path with peak P/T conditions of 685 ± 41 °C and >28 kbar, and equilibrated at 482–566 °C and 5.6–8.9 kbar during subsequent exhumation. The high-pressure – ultrahigh-pressure (HP-UHP) metamorphic belt within the EKO may have formed by collision between the Qaidam Block and the South Kunlun Block, as a consequence of the closure of the Proto-Tethys Ocean.
Chitooligosaccharides (COS) are multi-functional foods and nutrients and environmentally friendly biological abiotic-resistance inducing agents for plants. In the current study, the effects and possible mechanisms of COS on improving the cold resistance of rice (II YOU 1259) seedlings were investigated. Compared with the control, a COS pre-soaking treatment enhanced photosynthesis, reduced oxidation damage and led to accumulation of more osmotic regulation substances under chilling treatment. In addition, a novel Deg/HtrA family serine endopeptidase (DegQ) gene, related to COS enhanced rice cold resistance, was identified. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that transcription of DegQ and psbA (D1 protein encoding gene) were up-regulated in a time-dependent manner by COS treatment under cold stress. With increasing expression of the D1 protein, chlorophyll b content was enhanced correspondingly. The current results suggest that COS could enhance cold stress tolerance of rice by repairing the photodamaged photosystem II, altering osmotic regulation and reducing oxidation damage.
Multistage magmatic thermal events occurred in the Yardoi Dome and contain important information on the tectonomagmatic processes. The dome has played a crucial role in understanding the collisional evolution of the Tethyan Himalayan. We present new geochronological and geochemical data for muscovite-granite exposed in the Liemai area, Eastern Tethyan Himalayan Belt. Liemai muscovite-granite is strongly peraluminous, with A/CNK values characterized by evolved geochemical composition with high contents of SiO2-enriched large-ion lithophile elements, and is depleted of high-field-strength elements. These geochemical features indicate that granites possibly derived from partial melting of metasedimentary rocks and plagioclase fractional crystallization probably played a critical role in production of peraluminous granitic melts. Zircon U–Pb dating from muscovite-granite yielded ages of approximately 48.5 ± 1.1 Ma, representing its crystallization ages. This age is the oldest age of Tethyan Himalayan leucogranite from the Yardoi Dome and adjacent areas. However, the inherited zircon cores have ages of 135.7–3339.2 Ma. The εHf(t) values of all zircons vary from –6.4 to –2.3 and have varying Hf-isotope crustal model ages of 731–839 Ma. The geochemical and isotopic compositions indicate that magma of the Liemai granite can most likely be interpreted as products of the break-off related to thermal perturbation along the break-off window associated with the subduction of Neo-Tethyan slab. These magmas were derived mainly from the anatexis of ancient crustal materials under contraction and thickening conditions due to subduction of the Indian continent beneath southeastern Tibet.
In this paper, a switch function-based gas-kinetic scheme (SF-GKS) is presented for the simulation of inviscid and viscous compressible flows. With the finite volume discretization, Euler and Navier-Stokes equations are solved and the SF-GKS is applied to evaluate the inviscid flux at cell interface. The viscous flux is obtained by the conventional smooth function approximation. Unlike the traditional gas-kinetic scheme in the calculation of inviscid flux such as Kinetic Flux Vector Splitting (KFVS), the numerical dissipation is controlled with a switch function in the present scheme. That is, the numerical dissipation is only introduced in the region around strong shock waves. As a consequence, the present SF-GKS can well capture strong shock waves and thin boundary layers simultaneously. The present SF-GKS is firstly validated by its application to the inviscid flow problems, including 1-D Euler shock tube, regular shock reflection and double Mach reflection. Then, SF-GKS is extended to solve viscous transonic and hypersonic flow problems. Good agreement between the present results and those in the literature verifies the accuracy and robustness of SF-GKS.
A three-dimensional (3D) lattice Boltzmann flux solver (LBFS) is presented in this paper for the simulation of both isothermal and thermal flows. The present solver combines the advantages of conventional Navier-Stokes (N-S) solvers and lattice Boltzmann equation (LBE) solvers. It applies the finite volume method (FVM) to solve the N-S equations. Different from the conventional N-S solvers, its viscous and inviscid fluxes at the cell interface are evaluated simultaneously by local reconstruction of LBE solution. As compared to the conventional LBE solvers, which apply the lattice Boltzmann method (LBM) globally in the whole computational domain, it only applies LBM locally at each cell interface, and flow variables at cell centers are given from the solution of N-S equations. Since LBM is only applied locally in the 3D LBFS, the drawbacks of the conventional LBM, such as limitation to uniform mesh, tie-up of mesh spacing and time step, tedious implementation of boundary conditions, are completely removed. The accuracy, efficiency and stability of the proposed solver are examined in detail by simulating plane Poiseuille flow, lid-driven cavity flow and natural convection. Numerical results show that the LBFS has a second order of accuracy in space. The efficiency of the LBFS is lower than LBM on the same grids. However, the LBFS needs very less non-uniform grids to get grid-independence results and its efficiency can be greatly improved and even much higher than LBM. In addition, the LBFS is more stable and robust.
Tribological behavior of biomedical ultrafine-grained (UFGed) TiNbZrTaFe (TNZTF) composites fabricated by powder metallurgy was investigated under dry wear condition. Results show that compared with two kinds of conventional biomedical Ti–6Al–4V (TAV) and Ti–13Nb–13Zr (TNZ) alloys, the wear loss of the TNZTF samples is only 3.5% and 1% of that of the TAV and TNZ samples, respectively. Unusual tribological behavior is that the wear loss of the TNZTF samples decreases with the increase in sliding speed at the same load. This is attributed to the formation of a large amount of hard Nb2O5 particles on the contact surface of the material during rubbing and more severe plastic deformation in the material layers adjacent to the contact surfaces. The wear mechanism of the three kinds of alloys was also investigated. The outstanding tribological property proves that the UFGed TNZTF alloys should be an excellent candidate material to be used for biomedical application in the future.
Dietary fibre has been linked to lower levels of glycosylated haemoglobin A1c (HbA1c) among diabetes patients. The present study aimed to evaluate the long-term effect of dietary fibre on HbA1c levels among Chinese patients with type 2 diabetes mellitus.
Design
Two cross-sectional surveys were conducted in 2006 and 2011, with the second one being a repeat survey on a sub-sample from the initial one. In both surveys, an in-person interview was conducted to collect information on demographic characteristics and lifestyles following a similar protocol. Dietary intake was assessed with a validated FFQ. Anthropometric measures and biochemical assays were performed at the interview.
Setting
Communities in Pudong New Area of Shanghai, China.
Subjects
Chinese patients (n 934) with type 2 diabetes mellitus.
Results
An inverse association was observed between dietary fibre and glycaemic status indicated by HbA1c level in both surveys, although it was significant only in the first survey. Among 497 patients participating in both surveys, dietary fibre intake at the first survey was inversely associated with uncontrolled glycaemic status at the second survey, with adjusted odds ratios across the tertiles of intake being 1·00, 0·72 (95 % CI 0·43, 1·21) and 0·58 (95 % CI 0·34, 0·99; Ptrend = 0·048). The change in fibre intake was slightly associated with glycaemic status, with each increase in tertile scores of intake linked to a 0·138 % (β = −0·138; 95 % CI −0·002, 0·278) decrease in HbA1c value and a 19 % (OR = 0·81; 95 % CI 0·65, 1·02) reduced risk of uncontrolled glycaemic status at the second survey.
Conclusions
Dietary fibre may have a long-term beneficial effect on HbA1c level among Chinese diabetes patients.
Twins, due to their unique genetic and environmental relationships, have provided crucial insight in our understanding of genetic contributions to numerous etiologically complex disorders in developed countries. As the leading cause of death and adult disability, cardio- and cerebrovascular diseases are common in China, followed by cancer. Obesity and psychological disorders are increasing. The overall goal of this program is to develop a resource for genetic epidemiologic studies of these and other common and complex diseases in China. Our initial focus is to delineate the genetic and environmental determinants of vascular diseases in general, coronary artery disease (CAD) and stroke in particular. To date, we have over 4500 twin pairs registered and about 700 twin pairs studied for various metabolic traits (e.g., lipids, glucose, insulin, etc.). The long-term plan of this program is to (1) establish a population-based twin registry from several selected regions in China for future studies of specific common complex diseases; (2) conduct detailed phenotyping for clinical and intermediate traits related to cardiovascular diseases; (3) expand studies of twins to twin families by including their parents, siblings, and offspring for genetic linkage and association studies; and (4) follow up twins in the registry longitudinally. The goals of the program are health education and promotion of healthy behavior, early identification of cases to provide timely medical attention, and the evaluation of long-term effects of identified risk factors. We want to develop collaborations with investigators who have expertise in cancer, psychological disorders, and other disease areas.
The Chinese National Twin Registry is the first and largest population-based twin registry in China. It was established in 2001. The primary goal of this program is the establishment of a population-based twin registry of 45,000 twin pairs from several regions representing north, south, urban, and rural areas in China. A secondary goal is to study genetic contributions to complex diseases, and to test associations of candidate genes with related phenotypes. Seven thousand, four hundred and twenty-three twin pairs have been enrolled in the registry, in which 1613 pairs have undergone detailed questionnaire assessments and physical examination. Based on the baseline registry, a twin cohort was established. Continued research includes studies on intermediate phenotypes of cardiovascular and cerebrovascular diseases and psychological studies in adult twins, studies on growth and development in adolescent twins, and so forth. The current state and future plans for the Chinese National Twin Registry will be discussed in this article.
Proteomic approaches based on two-dimensional gel electrophoresis, mass spectrometry and database search are widely used to address questions about the development, physiology and quality of seeds. Identification of proteins is of great importance in proteomic analyses. For seed crops without full genome information, cross-species protein identification by mass spectrometry-driven sequence similarity search can be used. However, this approach is risky due to protein polymorphism between different species. Species-specific expressed sequence tag (EST) databases are an invaluable resource, which complements mass spectrometry data analysis for protein identification. Here, we illustrate a modified method of protein identification and characterization using species-specific EST databases and peptide mass fingerprinting with an example of protein identification. This method is reliable, supplements the existing methods, and improves the efficiency and accuracy of protein identification for seed crops for which complete genome information is not available.
It is shown that the essential spectrum of a cyclic, self-dual, subnormal operator is symmetric with respect to the real axis. The study of the structure of a cyclic, irreducible, self-dual, subnormal operator is reduced to the operator Sμ with bpeμ = D. Necessary and sufficient conditions for a cyclic subnormal operator Sμ with bpeμ = D to be self-dual are obtained under the additional assumption that the measure on the unit circle is log-integrable. Finally, an approach to a general cyclic, self-dual, subnormal operator is discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.