We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Offspring of parents with bipolar disorder (BD offspring) face elevated risks for emotional dysregulation and cognitive deficits, particularly in working memory. This study investigates working memory deficits and their neural correlates in BD offspring.
Methods
We assessed 41 BD offspring and 25 age-matched healthy controls (HCs) using a spatial N-back task and task-related functional magnetic resonance imaging (fMRI).
Results
Compared to HCs, BD offspring exhibit reduced accuracy and lower signal-detection sensitivity (d′) on the 1-back task. fMRI reveals hyperactivation in the right intracalcarine cortex/lingual gyrus (ICC/LG) in BD offspring, particularly during the 1-back condition. Psychophysiological interaction (PPI) analyses show reduced connectivity between the right ICC/LG and the left postcentral gyrus in BD offspring as task load increases from 0-back to 1-back. This connectivity positively correlates with 1-back task performance in HCs but not in BD offspring. Additionally, using bilateral dorsolateral prefrontal cortex (DLPFC) as regions of interest, PPI analyses show diminished condition-dependent connectivity between the left DLPFC and the left superior frontal gyrus/paracingulate cortex, and between the right DLPFC and the left postcentral gyrus/precentral gyrus in BD offspring as the task load increases.
Conclusions
These findings suggest that BD offspring exhibit working memory deficits and impaired neural connectivity involving both sensory processing and higher-order cognitive systems. Such deficits may emerge at a genetically predisposed stage of bipolar disorder, underscoring the significance of early identification and intervention strategies.
Foodborne diseases are ongoing and significant public health concerns. This study analysed data obtained from the Foodborne Outbreaks Surveillance System of Wenzhou to comprehensively summarise the characteristics of foodborne outbreaks from 2012 to 2022. A total of 198 outbreaks were reported, resulting in 2,216 cases, 208 hospitalisations, and eight deaths over 11 years. The findings suggested that foodborne outbreaks were more prevalent in the third quarter, with most cases occurring in households (30.8%). Outbreaks were primarily associated with aquatic products (17.7%) as sources of contamination. The primary transmission pathways were accidental ingestion (20.2%) and multi-pathway transmission (12.1%). Microbiological aetiologies (46.0%), including Vibrio parahaemolyticus, Salmonella ssp., and Staphylococcus aureus, were identified as the main causes of foodborne outbreaks. Furthermore, mushroom toxins (75.0%), poisonous animals (12.5%), and poisonous plants (12.5%) were responsible for deaths from accidental ingestion. This study identified crucial settings and aetiologies that require the attention of both individuals and governments, thereby enabling the development of effective preventive measures to mitigate foodborne outbreaks, particularly in coastal cities.
Major depressive disorder (MDD) is characterized by deficient reward functions in the brain. However, existing findings on functional alterations during reward anticipation, reward processing, and learning among MDD patients are inconsistent, and it was unclear whether a common reward system implicated in multiple reward functions is altered in MDD. Here we meta-analyzed 18 past studies that compared brain reward functions between adult MDD patients (N = 477, mean age = 26.50 years, female = 59.40%) and healthy controls (N = 506, mean age = 28.11 years, females = 55.58%), and particularly examined group differences across multiple reward functions. Jack-knife sensitivity and subgroup meta-analyses were conducted to test robustness of findings across patient comorbidity, task paradigm, and reward nature. Meta-regression analyses assessed the moderating effect of patient symptom severity and anhedonia scores. We found during reward anticipation, MDD patients showed lower activities in the lateral prefrontal-thalamus circuitry. During reward processing, patients displayed reduced activities in the right striatum and prefrontal cortex, but increased activities in the left temporal cortex. During reward learning, patients showed reduced activity in the lateral prefrontal–thalamic–striatal circuitry and the right parahippocampal–occipital circuitry but higher activities in bilateral cerebellum and the left visual cortex. MDD patients showed decreased activity in the right thalamus during both reward anticipation and learning, and in the right caudate during both reward processing and learning. Larger functional changes in MDD were observed among patients with more severe symptoms and higher anhedonia levels. The thalamic-striatal circuitry functional alterations could be the key neural mechanism underlying MDD patients overarching reward function deficiencies.
The purpose of this experiment was to evaluate the contribution of epiphytic microbiota on alfalfa (AL), oat (OT), and red clover (RC) to ensiling characteristics and bacterial community diversity of oat. With the irradiation of γ-ray, sterile OT (~233 g/kg dry matter (DM)) was inoculated by sterile water (STOT), epiphytic microbiota from OT (OTOT), AL (OTAL) and RC (OTRC), respectively. Triplicate silage-bags for each treatment were sampled after different days (1, 3, 7, 15, 30 and 60) of fermentation, respectively. Similar chemical compositions were found between fresh oat and STOT. Lower (P < 0.05) contents of ammonia nitrogen (NH3-N) and higher (P < 0.05) accumulation of lactic acid were found in OTAL compared with OTRC and OTOT on day 3. The greatest (P < 0.05) NH3-N, acetic acid concentrations and pH and the lowest (P < 0.05) concentration of lactic acid were found in OTRC on day 60. After 3 days of ensiling, Lactobacillus accounted for a big proportion in OTAL and OTOT, and Hafnia-Obesumbacterium was predominant in OTRC. The bacterial communities in OTAL and OTOT had lower (P < 0.05) abundances of ‘Genetic Information Processing’ than OTRC after 3 days. Overall, the composition, diversity, and activity of epiphytic microbiota can notably influence the ensiling characteristics of forage oat. The lactic acid bacteria (hetero-fermentative type) and Enterobacteriaceae species played an important role in producing ethanol contents during the ensiling of forage oat.
Injection of CaCl2 and Na2SiO3 solutions into clay suspensions during electroosmosis often improves the cohesive strength of clays near the anode and cathode, whereas the cohesive strength of clays between the electrodes remains weak. Although the main improvement mechanism for the cohesive strength of clays near the cathode was demonstrated to be a pozzolanic reaction (formation of calcium silicate hydrate cement), the mechanism of improved cohesive strength near the anode is still not understood. The objective of the present study was to investigate the mechanism for the improvement of cohesive strength near the anode and, thus, make it possible to determine a way to enhance the range in improvement using kaolinite as the test clay. The test was performed by first injecting CaCl2 solution during electroosmosis until the optimum volume of CaCl2 was attained. This was followed by treatment with Na2SiO3 solution for different lengths of time. The results indicate that the anode region after treatment was acidic (pH = 4) because the electrolysis of water causes acidification near the anode. As Na2SiO3 solution was injected through the anode, the mechanism of cohesive strength improvement of the treated clay near the anode was attributed to the silicic acid polymerization effect provided by the Na2SiO3 solution. The silicic acid may link the clay particles together to form a gel network in a low pH environment. The clay gel network structure developed rigidity as the water content was reduced. In addition, as the volume of injected Na2SiO3 solution was increased, the cohesive strength near the anode also increased.
Multilayer dielectric gratings (MLDGs) are crucial for pulse compression in picosecond–petawatt laser systems. Bulged nodular defects, embedded in coating stacks during multilayer deposition, influence the lithographic process and performance of the final MLDG products. In this study, the integration of nanosecond laser conditioning (NLC) into different manufacturing stages of MLDGs was proposed for the first time on multilayer dielectric films (MLDFs) and final grating products to improve laser-induced damage performance. The results suggest that the remaining nodular ejection pits introduced by the two protocols exhibit a high nanosecond laser damage resistance, which remains stable when the irradiated laser fluence is more than twice the nanosecond-laser-induced damage threshold (nanosecond-LIDT) of the unconditioned MLDGs. Furthermore, the picosecond-LIDT of the nodular ejection pit conditioned on the MLDFs was approximately 40% higher than that of the nodular defects, and the loss of the grating structure surrounding the nodular defects was avoided. Therefore, NLC is an effective strategy for improving the laser damage resistance of MLDGs.
One of the most common harmful mites in edible fungi is Histiostoma feroniarum Dufour (Acaridida: Histiostomatidae), a fungivorous astigmatid mite that feeds on hyphae and fruiting bodies, thereby transmitting pathogens. This study examined the effects of seven constant temperatures and 10 types of mushrooms on the growth and development of H. feroniarum, as well as its host preference. Developmental time for the total immature stages was significantly affected by the type of mushroom species, ranging from 4.3 ± 0.4 days (reared on Pleurotus eryngii var. tuoliensis Mou at 28°C) to 17.1 ± 2.3 days (reared on Auricularia polytricha Sacc. at 19°C). The temperature was a major factor in the formation of facultative heteromorphic deutonymphs (hypopi). The mite entered the hypopus stage when the temperature dropped to 16°C or rose above 31°C. The growth and development of this mite were significantly influenced by the type of species and variety of mushrooms. Moreover, the fungivorous astigmatid mite preferred to feed on the ‘Wuxiang No. 1’ strain of Lentinula edodes (Berk.) Pegler and the ‘Gaowenxiu’ strain of P. pulmonarius (Fr.) Quél., with a shorter development period compared with that of feeding on other strains. These results therefore quantify the effect of host type and temperature on fungivorous astigmatid mite growth and development rates, and provide a reference for applying mushroom cultivar resistance to biological pest control.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three
$60\,\mathrm{deg}^{2}$
regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of
$z \lesssim 0.08$
. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of
$z \approx 0.014$
is relatively low compared to the full WALLABY survey. The median galaxy H i mass is
$2.3 \times 10^{9}\,{\rm M}_{{\odot}}$
. The target noise level of
$1.6\,\mathrm{mJy}$
per 30′′ beam and
$18.5\,\mathrm{kHz}$
channel translates into a
$5 \sigma$
H i mass sensitivity for point sources of about
$5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$
across 50 spectral channels (
${\approx} 200\,\mathrm{km \, s}^{-1}$
) and a
$5 \sigma$
H i column density sensitivity of about
$8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$
across 5 channels (
${\approx} 20\,\mathrm{km \, s}^{-1}$
) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
The risk of antipsychotic-associated cardiovascular and metabolic events may differ among countries, and limited real-world evidence has been available comparing the corresponding risks among children and young adults. We, therefore, evaluated the risks of cardiovascular and metabolic events in children and young adults receiving antipsychotics.
Methods
We conducted a multinational self-controlled case series (SCCS) study and included patients aged 6–30 years old who had both exposure to antipsychotics and study outcomes from four nationwide databases of Taiwan (2004–2012), Korea (2010–2016), Hong Kong (2001–2014) and the UK (1997–2016) that covers a total of approximately 100 million individuals. We investigated three antipsychotics exposure windows (i.e., 90 days pre-exposure, 1–30 days, 30–90 days and 90 + days of exposure). The outcomes were cardiovascular events (stroke, ischaemic heart disease and acute myocardial infarction), or metabolic events (hypertension, type 2 diabetes mellitus and dyslipidaemia).
Results
We included a total of 48 515 individuals in the SCCS analysis. We found an increased risk of metabolic events only in the risk window with more than 90-day exposure, with a pooled IRR of 1.29 (95% CI 1.20–1.38). The pooled IRR was 0.98 (0.90–1.06) for 1–30 days and 0.88 (0.76–1.02) for 31–90 days. We found no association in any exposure window for cardiovascular events. The pooled IRR was 1.86 (0.74–4.64) for 1–30 days, 1.35 (0.74–2.47) for 31–90 days and 1.29 (0.98–1.70) for 90 + days.
Conclusions
Long-term exposure to antipsychotics was associated with an increased risk of metabolic events but did not trigger cardiovascular events in children and young adults.
To evaluate the effects of dietary Ca intake and Ca supplementation during pregnancy on low birth weight (LBW) and small for gestational age (SGA) infants.
Design:
A birth cohort study was conducted in 2010–2012 at the Gansu Provincial Maternity and Child Care Hospital in Lanzhou, China.
Setting:
A birth cohort study.
Participants:
Totally, 9595 pregnant women who came to the hospital for delivery at 20 weeks of gestation or more, and who were 18 years of age or older.
Results:
Compared with non-users, Ca supplement users had a reduced risk of LBW infants (OR = 0·77, 95 % CI: 0·63, 0·95) and a reduced risk of nulliparous women giving birth to LBW infants (OR = 0·75, 95 % CI: 0·58, 0·98) (P < 0·05). More specifically, both the use of Ca supplement before conception and during pregnancy (OR = 0·44, 95 % CI: 0·19, 0·99) and during pregnancy only (OR = 0·80, 95 % CI: 0·65, 0·99) had the main effect of reducing risk of nulliparous women giving birth to LBW infants (P < 0·05). There was no association between Ca supplementation and SGA (OR = 0·87, 95 % CI: 0·75, 1·01) (P > 0·05). However, higher dietary Ca intake during pregnancy decreases the risk of both LBW (quartile 2: OR = 0·72, 95 % CI: 0·55, 0·94; quartile 3: OR = 0·68, 95 % CI: 0·50, 0·62) and SGA infants (quartile 2: OR = 0·77, 95 % CI: 0·63, 0·95; quartile 3: OR = 0·71, 95 % CI: 0·57, 0·88, quartile 4: OR = 0·71, 95 % CI: 0·57, 0·88) (P < 0·05).
Conclusions:
Ca supplementation and adequate dietary intake of Ca during pregnancy are associated with a decreased risk of LBW infants born to nulliparous women.
Although prenatal exposure to high ambient temperatures were reported to be associated with preterm birth, limited research assessed the impact of weather-related extreme heat events (EHE) on birthweight, particularly by trimester. We, therefore, investigated the impact of prenatal EHE on birthweight among term babies (tLBW) by trimester and birthweight percentile. We conducted a population-based case–control study on singleton live births at 38–42 gestational weeks in New York State (NYS) by linking weather data with NYS birth certificates. A total of 22,615 cases were identified as birthweight <2500 gram, and a random sample of 139,168 normal birthweight controls was included. EHE was defined as three consecutive days with the maximum temperatures of ≥32.2 °C/90 °F (EHE90) and two consecutive days of temperatures ≥97th percentile (EHE97) based on the distribution of the maximum temperature for the season and region. We estimated odds ratios (ORs) and 95% confidence intervals (95% CI) with multivariable unconditional logistic regression, controlling for confounders. Overall exposure to EHE97 for 2 d was associated with tLBW (OR 1.05; 95% CI 1.02, 1.09); however, the strongest associations were only observed in the first trimester for both heat indicators, especially when exposure was ≥3 d (ORs ranged: 1.06–1.13). EHE in the first trimester was associated with significant reduction in mean birthweight from 26.78 gram (EHE90) to 36.25 gram (EHE97), which mainly affected the 40th and 60th birthweight percentiles. Findings revealed associations between multiple heat indicators and tLBW, where the impact was consistently strongest in the first trimester.
In this contribution, we use heavy ion irradiation and photoluminescence (PL) spectroscopy to demonstrate that defects can be used to tailor the optical properties of two-dimensional molybdenum disulfide (MoS2). Sonicated MoS2 flakes were deposited onto Si/SiO2 substrate and subjected to 3 MeV Au2+ ion irradiation at room temperature to fluences ranging from 1 × 1012 to 1 × 1016 cm−2. We demonstrate that irradiation-induced defects can control optical excitations in the inner core shell of MoS2 by binding A1s- and B1s-excitons, and correlate the exciton peaks to the specific defects introduced with irradiation. The systematic increase of ion fluence produced different defect densities in MoS2, which were estimated using B/A exciton ratios and progressively increased with ion fluence. We show that up to the fluences of 1 × 1014 cm−2, the MoS2 lattice remains crystalline and defect densities can be controlled, whereas at higher fluences (≥1 × 1015 cm−2), the large number of introduced defects distorts the excitonic structure of the material. In addition to controlling excitons, defects were used to split bound and free trions, and we demonstrate that at higher fluences (1 × 1015 cm−2), both free and bound trions can be observed in the same PL spectrum. Most importantly, the lifetimes of these states exceed trion and exciton lifetimes in pristine MoS2, and PL spectra of irradiated MoS2 remains unchanged weeks after irradiation experiments. Thus, this work demonstrated the feasibility of engineering novel optical behaviors in low-dimensional materials using heavy ion irradiation. The insights gained from this study will aid in understanding the many-body interactions in low-dimensional materials and may ultimately be used to develop novel materials for optoelectronic applications.
Perceived loneliness, an increasingly prevalent social issue, is closely associated with major depressive disorder (MDD). However, the neural mechanisms previously implicated in key cognitive and affective processes in loneliness and MDD still remain unclear. Such understanding is critical for delineating the psychobiological basis of the relationship between loneliness and MDD.
Methods
We isolated the unique and interactive cognitive and neural substrates of loneliness and MDD among 27 MDD patients (mean age = 51.85 years, 20 females), and 25 matched healthy controls (HCs; mean age = 48.72 years, 19 females). We assessed participants' behavioral performance and neural regional and network functions on a Stroop color-word task, and their resting-state neural connectivity.
Results
Behaviorally, we found greater incongruence-related accuracy cost in MDD patients, but reduced incongruence effect on reaction time in lonelier individuals. When performing the Stroop task, loneliness positively predicted prefrontal-anterior cingulate-parietal connectivity across all participants, whereas MDD patients showed a decrease in connectivity compared to controls. Furthermore, loneliness negatively predicted parietal and cerebellar activities in MDD patients, but positively predicted the same activities in HCs. During resting state, MDD patients showed reduced parietal-anterior cingulate connectivity, which again positively correlated with loneliness in this group.
Conclusions
We speculate the distinct neurocognitive profile of loneliness might indicate increase in both bottom-up attention and top-down executive control functions. However, the upregulated cognitive control processes in lonely individuals may eventually become exhausted, which may in turn predispose to MDD onset.
Investigate short- and long-term effects of Superstorm Sandy on multiple morbidities among the elderly.
Methods
We examined emergency department visits; outpatient visits; and hospital admissions for cardiovascular disease (CVD), respiratory disease, and injury among residents residing in 8 affected counties immediately, 4 months, and 12 months following Superstorm Sandy. Control groups were defined as visits/admissions during the identical time window in the 5 years before (2007-2011) and 1 year after (2013-2014) the storm in affected and nonaffected counties in New York. We performed Poisson regression to test whether there was an association of increased visits/admissions for periods following Superstorm Sandy while controlling for covariates.
Results
We found that the risk for CVD, respiratory disease, and injury visits/admissions was more than twice as high immediately, 4 months, and 12 months after the storm than it was in the control periods. Women were at greater risk at all time periods for CVD (risk ratio [RR], 2.04) and respiratory disease (RRs: 1.89 to 1.92). Whites had higher risk for CVD, respiratory disease, and injury than other racial groups during each period.
Conclusion
We observed increases in CVD, respiratory disease, and injury up to a year following Superstorm Sandy. Findings demonstrate the need to incorporate short- and long-term health effects into public health recovery. (Disaster Med Public Health Preparedness. 2019;13:28-32)
The present study was carried out to evaluate the effect of dietary supplemental vitamin D3 (VD3) on P absorption and utilisation as well as its related mechanisms in the small intestine of broilers. A total of 384 1-d-old Arbor Acres male broilers were assigned randomly into four treatments following a completely randomised design with a 2 (dietary non-phytate P (NPP) contents: 0·43 and 0·22 %)×2 (dietary VD3 supplemental levels: 0 and 87·5 μg/kg) factorial arrangement. The experiment lasted for 22 d. The results showed that P contents in serum from the hepatic portal vein and tibia ash of broilers were higher (P<0·05) for 0·43 % NPP than for 0·22 % NPP. The type IIb Na-dependent phosphate cotransporter (NaP-IIb) protein expressions in the duodenum and ileum were higher (P<0·05) also for 0·43 % NPP than 0·22 % NPP. Supplementation of VD3 enhanced (P<0·05) tibia P retention rate and type III Na-dependent phosphate cotransporter (PiT)-1 protein expression in the duodenum of all broilers. Moreover, VD3 supplementation decreased (P<0·002) mortality and increased (P<0·02) serum P content from the hepatic portal vein after 4 h of feeding, tibia ash content, tibia ash P content and protein expressions of NaP-IIb and PiT-1 in the jejunum of broilers fed diet with 0·22 % NPP. Thus, dietary supplemental VD3 promoted intestinal P absorption and bone P utilisation, and this effect might be associated with enhanced PiT-1 levels in the duodenum and PiT-1 and NaP-IIb levels in the jejunum respectively when dietary NPP is limiting.
In high power laser facility for inertial confinement fusion research, final optics assembly (FOA) plays a critical role in the frequency conversion, beam focusing, color separation, beam sampling and debris shielding. The design and performance of FOA in SG-II Upgrade laser facility are mainly introduced here. Due to the limited space and short focal length, a coaxial aspheric wedged focus lens is designed and applied in the FOA configuration. Then the ghost image analysis, the focus characteristic analysis, the B integral control design and the optomechanical design are carried out in the FOA design phase. In order to ensure the FOA performance, two key technologies are developed including measurement and adjustment technique of the wedged focus lens and the stray light management technique based on ground glass. Experimental results show that the design specifications including laser fluence, frequency conversion efficiency and perforation efficiency of the focus spot have been achieved, which meet the requirements of physical experiments well.
The Shen-Guang II Upgrade (SG-II-U) laser facility consists of eight high-power nanosecond laser beams and one short-pulse picosecond petawatt laser. It is designed for the study of inertial confinement fusion (ICF), especially for conducting fast ignition (FI) research in China and other basic science experiments. To perform FI successfully with hohlraum targets containing a golden cone, the long-pulse beam and cylindrical hohlraum as well as the short-pulse beam and cone target alignment must satisfy tight specifications (30 and $20~\unicode[STIX]{x03BC}\text{m}$ rms for each case). To explore new ICF ignition targets with six laser entrance holes (LEHs), a rotation sensor was adapted to meet the requirements of a three-dimensional target and correct beam alignment. In this paper, the strategy for aligning the nanosecond beam based on target alignment sensor (TAS) is introduced and improved to meet requirements of the picosecond lasers and the new six LEHs hohlraum targets in the SG-II-U facility. The expected performance of the alignment system is presented, and the alignment error is also discussed.
Previous studies have reported conflicting results on the association between schizophrenia and cancer mortality.
Aims
To summarise available evidence and quantify the association between schizophrenia and cancer mortality using meta-analysis.
Method
We systematically searched literature in the PubMed and Embase databases. Risk estimates and 95% confidence intervals reported in individual studies were pooled using the DerSimonian–Laird random-effects model.
Results
We included 19 studies in the meta-analysis. Among them, 15 studies reported standardised mortality ratios (SMRs) comparing patients with schizophrenia with the general population, and the pooled SMR was 1.40 (95% CI 1.29–1.52, P<0.001). The other four studies reported hazard ratios (HRs) comparing individuals with schizophrenia with those without schizophrenia; the pooled HR was 1.51 (95% CI 1.13–2.03, P = 0.006).
Conclusions
Patients with schizophrenia are at a significantly increased risk of cancer mortality compared with the general population or individuals without schizophrenia.
The temporal dynamics of ciliate community structure in a southern Chinese shrimp aquaculture facility were investigated during the period June–September 2012. A total of 53 species belonging to 37 genera and 17 orders were recorded based on analyses of eight samples. Ciliate abundance peaked between 16 August and 14 September 2012, while the maximum number of species occurred on 26 June 2012. Clear temporal patterns were observed in the ciliate community structure. The patterns of succession of the 10 most abundant species were consistent with the results of a Canonical Analysis of Principal coordinates (CAP) analysis. Correlation analyses showed that these patterns of succession were related to temporal changes in environmental variables. In summary, the results demonstrate that the ciliate community responds predictably to environmental variations and recovers from shrimp cultivation.
We present a reconstructed lithologic column compiled from a series of lacustrine outcrops along a tributary of the Nyang River, a major tributary of the Yarlung-Tsangpo in southeast Tibet. The deposits were preserved between terraces at altitudes of 2950–3100 m asl. The stratigraphic record features at least two sets of coarsening-upward sequences depicting episodic aggradation and progradation of a glacially dammed lake related delta. Recognized facies changes illustrate the evolution cycles of depositional environments from pro-delta, delta front, to delta plain. Radiocarbon and optically stimulated luminescence dates reveal an aging-downward trend in stratigraphic order and provide an approximate timeline for the formation of glacially dammed lakes in late Pleistocene. This result reflects that the Zelunglung Glacier had progressively advanced to block the Yarlung-Tsangpo river and the dam materials had stepwise stacked up to an altitude of 3095 m asl during Marine Oxygen Isotope Stages 4 to 2.