We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Residual Lesion Score is a novel tool for assessing the achievement of surgical objectives in congenital heart surgery based on widely available clinical and echocardiographic characteristics. This article describes the methodology used to develop the Residual Lesion Score from the previously developed Technical Performance Score for five common congenital cardiac procedures using the RAND Delphi methodology.
Methods:
A panel of 11 experts from the field of paediatric and congenital cardiology and cardiac surgery, 2 co-chairs, and a consultant were assembled to review and comment on validity and feasibility of measuring the sub-components of intraoperative and discharge Residual Lesion Score for five congenital cardiac procedures. In the first email round, the panel reviewed and commented on the Residual Lesion Score and provided validity and feasibility scores for sub-components of each of the five procedures. In the second in-person round, email comments and scores were reviewed and the Residual Lesion Score revised. The modified Residual Lesion Score was scored independently by each panellist for validity and feasibility and used to develop the “final” Residual Lesion Score.
Results:
The Residual Lesion Score sub-components with a median validity score of ≥7 and median feasibility score of ≥4 that were scored without disagreement and with low absolute deviation from the median were included in the “final” Residual Lesion Score.
Conclusion:
Using the RAND Delphi methodology, we were able to develop Residual Lesion Score modules for five important congenital cardiac procedures for the Pediatric Heart Network’s Residual Lesion Score study.
This essay is a narrative of my work on Elizabeth Bishop, beginning with my Ph.D. dissertation (1976) and detailing my choices in the three landmark volumes I edited: Elizabeth Bishop and Her Art (University of Michigan Press, 1983) – the first collection of critical work on Bishop, which includes a section of her previously uncollected writing; Elizabeth Bishop: Poems, Prose, and Letters (Library of America, 2008), the first volume to include almost all of her published and major posthumously published and unpublished work; and Elizabeth Bishop: Prose (FSG, 2011), the first substantially complete independent collection of her prose works published to celebrate her centennial, which includes her significant correspondence with poet Anne Stevenson and the closest possible restoration of her book Brazil to what she originally intended, before the editors of Life rewrote it. The chapter ends with the “rescue” of one of her major unpublished poems.
To outline methods for deriving and validating intensive care unit (ICU) antimicrobial utilization (AU) measures from computerized data and to describe programming problems that emerged.
Design.
Retrospective evaluation of computerized pharmacy and administrative data.
Setting.
ICUs from 4 academic medical centers over 36 months.
Interventions.
Investigators separately developed and validated programming code to report AU measures in selected ICUs. Use of antibacterial and antifungal drugs for systemic administration was categorized and expressed as antimicrobial-days (each day that each antimicrobial drug was given to each patient) and patient-days receiving antimicrobials (each day that any antimicrobial drug was given to each patient). Monthly rates were compiled and analyzed centrally, with ICU patient-days as the denominator. Results were validated against data collected from manual review of medical records. Frequent discussion among investigators aided identification and correction of programming problems.
Results.
AU data were successfully programmed though a reiterative process of computer code revision. After identifying and resolving major programming errors, comparison of computerized patient-level data with data collected by manual review of medical records revealed discrepancies in antimicrobial-days and patient-days receiving antimicrobials that ranged from less than 1% to 17.7%. The hospital from which numerator data were derived from electronic records of medication administration had the least discrepant results.
Conclusions.
Computerized AU measures can be derived feasibly, but threats to validity must be sought out and corrected. The magnitude of discrepancies between computerized AU data and a gold standard based on manual review of medical records varies, with electronic records of medication administration providing maximal accuracy.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.