We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Late-life depression (LLD) is characterized by medial temporal lobe (MTL) abnormalities. Although gray matter (GM) and white matter (WM) differences in LLD have been reported, few studies have investigated them concurrently. Moreover, the impact of aetiological factors, such as neurodegenerative and cerebrovascular burden, on tissue differences remains elusive.
Methods
This prospective cross-sectional study involved 72 participants, including 33 patients with LLD (mean age 72.2 years, 23 female) and 39 healthy controls (HCs) (mean age 70.6 years, 24 female), who underwent clinical and positron emission tomography (PET)-magnetic resonance imaging (MRI) assessments. High-resolution 3D T1-weighted and T2-weighted FLAIR images were used to assess MTL GM volumes and white matter hyperintensities (WMHs), a proxy for cerebrovascular burden. Diffusion kurtosis imaging metrics derived from multishell diffusion MRI data were analyzed to assess WM microstructure in the following MTL bundles reconstructed using constrained spherical deconvolution tractography: uncinate fasciculus, fornix, and cingulum. Standardized uptake value ratio of 18F-MK-6240 in the MTL was used to assess Alzheimer’s disease (AD) type tau accumulation as a proxy for neurodegenerative burden.
Results
Compared to HCs, patients with LLD showed significantly lower bilateral MTL volumes and WM microstructural differences primarily in the uncinate fasciculi bilaterally and right fornix. In patients with LLD, higher vascular burden, but not tau, was associated with lower MTL volume and more pronounced WM differences.
Conclusions
LLD was associated with both GM and WM differences in the MTL. Cerebrovascular disease, rather than AD type tau-mediated neurodegenerative processes, may contribute to brain tissue differences in LLD.
Very-late-onset schizophrenia-like psychosis (VLOSLP) is associated with significant burden. Its clinical importance is increasing as the global population of older adults rises, yet owing to limited research in this population, the neurobiological underpinnings of VLOSP remain insufficiently clarified. Here we address this knowledge gap using novel morphometry techniques to investigate grey matter volume (GMV) differences between VLOSLP and healthy older adults, and their correlations with neuropsychological scores.
Methods
In this cross-sectional study, we investigated whole-brain GMV differences between 35 individuals with VLOSLP (mean age 76.7, 26 female) and 36 healthy controls (mean age 75.7, 27 female) using whole-brain voxel-based morphometry (VBM) and supplementary source-based morphometry (SBM) on high resolution 3D T1-weighted MRI images. Additionally, we investigated relationships between GMV differences and cognitive function assessed with an extensive neuropsychological battery.
Results
VBM showed lower GMV in the thalamus, left inferior frontal gyrus and left insula in patients with VLOSLP compared to healthy controls. SBM revealed lower thalamo-temporal GMV in patients with VLOSLP. Processing speed, selective attention, mental flexibility, working memory, verbal memory, semantic fluency and confrontation naming were impaired in patients with VLOSLP. Correlations between thalamic volumes and memory function were significant within the group of individuals with VLOSLP, whereas no significant associations remained in the healthy controls.
Conclusions
Lower GMV in the thalamus and fronto-temporal regions may be part of the underlying neurobiology of VLOSLP, with lower thalamic GMV contributing to memory impairment in the disorder.
Lithium (Li) is the gold standard treatment for bipolar disorder (BD). However, its mechanisms of action remain unknown but include neurotrophic effects. We here investigated the influence of Li on cortical and local grey matter (GM) volumes in a large international sample of patients with BD and healthy controls (HC).
Methods
We analyzed high-resolution T1-weighted structural magnetic resonance imaging scans of 271 patients with BD type I (120 undergoing Li) and 316 HC. Cortical and local GM volumes were compared using voxel-wise approaches with voxel-based morphometry and SIENAX using FSL. We used multiple linear regression models to test the influence of Li on cortical and local GM volumes, taking into account potential confounding factors such as a history of alcohol misuse.
Results
Patients taking Li had greater cortical GM volume than patients without. Patients undergoing Li had greater regional GM volumes in the right middle frontal gyrus, the right anterior cingulate gyrus, and the left fusiform gyrus in comparison with patients not taking Li.
Conclusions
Our results in a large multicentric sample support the hypothesis that Li could exert neurotrophic and neuroprotective effects limiting pathological GM atrophy in key brain regions associated with BD.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.