We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We perform a comprehensive linear non-modal stability analysis of the Rayleigh–Bénard convection with and without a Poiseuille/Couette flow in Oldroyd-B fluids. In the absence of shear flow, unlike the Newtonian case in which the perturbation energy decays monotonically with time, the interaction between temperature gradient and polymeric stresses can surprisingly cause a transient growth up to 104. This transient growth is maximized at the Hopf bifurcation when the stationary instability dominant in the weakly elastic regime transitions to the oscillatory instability dominant in the strongly elastic regime. In the presence of a Poiseuille/Couette flow, the streamwise-uniform disturbances may achieve the greatest energy amplification, and similar to the pure bounded shear flows, Gmax ∝ Re2 and tmax ∝ Re, where Gmax is the maximum energy growth, tmax the time to attain Gmax, Re the Reynolds number. It is noteworthy that there exist two peaks during the transient energy growth at high-Re cases. Different from the first one which is less affected by the temperature gradient and elasticity, the second peak, at which the disturbance energy is the largest, is simultaneously determined by the temperature gradient, elasticity and shear intensity. Specifically, the polymeric stresses field absorbs energy from the temperature field and base flow, which is partially transferred into the perturbed hydrodynamic field eventually, driving the transient amplification of the perturbed wall-normal vorticity.
Objectives/Goals: Cutaneous lupus erythematosus (CLE) is an inflammatory skin manifestation of lupus. CLE lesions are frequently colonized by Staphylococcus aureus, a microbe known to promote IFN production and inflammation. Here, we investigate whether type I IFN and inflammatory gene signatures in CLE lesions can be modulated with a topical antibiotic treatment. Methods/Study Population: SLE patients with active CLE lesions (n = 12) were recruited and randomized into a week of topical treatment with either 2% mupirocin or petroleum jelly vehicle. Paired samples were collected before and after 7 days of treatment to assess microbial lesional skin responses. Microbial samples from nares and lesional skin were used to determine baseline and posttreatment Staphylococcus abundance and microbial community profiles by 16S rRNA gene sequencing. Inflammatory responses were evaluated by bulk RNA sequencing of lesional skin biopsies. Immunophenotyping of CLE lesions was performed using CIBERSORTx to deconvolute the RNA-seq data into predicted cell populations impacted by treatment. Results/Anticipated Results: We identified 173 differentially expressed genes in CLE lesions after topical mupirocin treatment. Mupirocin treatment decreased the abundance of Staphylococcus associated with CLE lesions without altering the overall diversity of the skin microbiota relative to vehicle. Decreased lesional Staphylococcus burden correlated with decreased IFN pathway signaling and inflammatory gene expression and increased barrier dysfunction. Interestingly, mupirocin treatment lowered skin monocyte levels, and this mupirocin-associated depletion of monocytes correlated with decreased inflammatory gene expression. Discussion/Significance of Impact: Mupirocin treatment decreased lesional Staphylococcus burden and this correlated with decreased IFN signaling and inflammatory gene expression. This study suggests a topical antibiotic could be employed to decrease lupus skin inflammation and type I IFN responses by reducing Staphylococcus colonization.
Industrial robots are widely utilized in the machining of complex parts because of their flexibility. However, their low positioning accuracy and spatial geometric error characteristics significantly limit the contour precision of robot machined parts. Therefore, in the robot machining procedure, an in situ measurement system is typically required. This study aims to enhance the trajectory accuracy of robotic machining through robotic in situ measurement and meta-heuristic optimization. In this study, a measurement-machining dual-robot system for measurement and machining is established, consisting of a measurement robot with a laser sensor mounted at the robot end and a machining robot equipped with a machining tool. In the measuring process, high-precision standard spheres are set on the edge of the machining area, and the high-precision standard geometry is measured by the measurement robot. According to measured geometry information in the local area, the trajectory accuracy for the machining robot is improved. By utilizing the standard radius of the standard spheres and adopting a meta-heuristic optimization algorithm, this study addresses the complexity of the robot kinematics model, while also overcoming local optima commonly introduced by gradient-based iterative methods. The results of the experiments in this study confirm that the proposed method markedly refines the precision of the robot machining trajectory.
This study elucidated the impacts of coenzyme Q10 (COQ10) supplementation in a high-fat diet (HFD) on growth, lipid metabolism and mitochondrial function in spotted seabass (Lateolabrax maculatus). Totally five diets were formulated: a diet with normal fat content (11 % lipid, NFD), a HFD (17 % lipid) and three additional diets by supplementing 5, 20 or 80 mg/kg of COQ10 to the HFD. After an 8-week culture period, samples were collected and analysed. The results demonstrated that COQ10 inclusion prevented the HFD-induced deterioration of growth performance and feed utilisation. COQ10 alleviated the deposition of saturated fatty acids following HFD intake and promoted the assimilation of n-3 and n-6 PUFA. Moreover, COQ10 administration inhibited the surge in serum transaminase activity and reduced hepatic lipid content following HFD ingestion, which was consistent with the results of oil red O staining. In addition, HFD feeding led to reduced hepatic citrate synthase and succinate dehydrogenase activities and decreased ATP content. Notably, COQ10 administration improved these indices and up-regulated the expression of mitochondrial biogenesis-related genes (pgc-1α, pgc-1β, nrf-1, tfam) and autophagy-related genes (pink1, mul1, atg5). In summary, supplementing 20–80 mg/kg of COQ10 in the HFD promoted growth performance, alleviated hepatic fat accumulation and enhanced liver mitochondrial function in spotted seabass.
This study was designed to explore the mediating role of serum 25-hydroxyvitamin D (25(OH) D) in Triglyceride–glucose (TyG) index and hypertension (HTN). Study participants were selected from the 2001 to 2018 National Health and Nutrition Examination Survey. Firstly, we estimated the association between TyG index and serum 25(OH)D with HTN using a weighted multivariable logistic regression model and restricted cubic spline. Secondly, we used a generalised additive model to investigate the correlation between TyG index and serum 25(OH)D. Lastly, serum 25(OH)D was investigated as a mediator in the association between TyG index and HTN. There were 14 099 subjects in total. TyG index was positively and linearly associated with HTN risk, while serum 25(OH)D had a U-shaped relationship with the prevalence of HTN. When the serum 25(OH)D levels were lower than 57·464 mmol/l, the prevalence of HTN decreased with the increase of serum 25(OH)D levels. When serum 25(OH)D levels rise above 57·464 mmol/l, the risk of HTN increases rapidly. Based on the U-shaped curve, serum 25(OH)D concentrations were divided into two groups: < 57·464 and ≥57·464 mmol/l. According to the mediation analysis, when serum 25(OH)D levels reached < 57·464 mmol/l, the positive association between the TyG index and incident HTN was increased by 25(OH)D. When serum 25(OH)D levels reached ≥ 57·464 mmol/l, the negative association between the TyG index and incident HTN was increased by 25(OH)D. There was a mediation effect between the TyG index and HTN, which was mediated by 25(OH)D. Therefore, we found that the association between serum 25(OH)D levels and TyG index may influence the prevalence of HTN.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
In rural China, male offspring are traditionally regarded as the primary heirs of household assets, particularly land. This study examines the impact of offspring gender composition on long-term agricultural investment behavior, using commercial organic fertilizer application as an example of a strategic long-term investment in farmland. Based on cross-sectional data from 4090 rice farming households across 10 cities (counties) in Hubei province, collected between 2021 and 2023, this analysis identifies three key findings. First, the absence of male offspring significantly reduces long-term agricultural investments, a result that remains robust even when addressing potential endogeneity biases using instrumental variable techniques. Second, households without male heirs exhibit stronger present-oriented preferences and diminished social capital, which further hinder long-term agricultural investments. Third, the negative impact of not having male offspring is more pronounced when the current agricultural decision-maker is male and when land marketization is underdeveloped. These findings underscore the complex interplay between gender norms and agricultural behavior, revealing significant socioeconomic implications of inheritance practices. The study provides insights into addressing these challenges by emphasizing the importance of promoting gender equality and advancing land marketization to enhance equitable land use and support long-term agricultural investment.
The school–vacation cycle may have impacts on the psychological states of adolescents. However, little evidence illustrates how transition from school to vacation impacts students’ psychological states (e.g. depression and anxiety).
Aims
To explore the changing patterns of depression and anxiety symptoms among adolescent students within a school–vacation transition and to provide insights for prevention or intervention targets.
Method
Social demographic data and depression and anxiety symptoms were measured from 1380 adolescent students during the school year (age: 13.8 ± 0.88) and 1100 students during the summer vacation (age: 14.2 ± 0.93) in China. Multilevel mixed-effect models were used to examine the changes in depression and anxiety levels and the associated influencing factors. Network analysis was used to explore the symptom network structures of depression and anxiety during school and vacation.
Results
Depression and anxiety symptoms significantly decreased during the vacation compared to the school period. Being female, higher age and with lower mother's educational level were identified as longitudinal risk factors. Interaction effects were found between group (school versus vacation) and the father's educational level as well as grade. Network analyses demonstrated that the anxiety symptoms, including ‘Nervous’, ‘Control worry’ and ‘Relax’ were the most central symptoms at both times. Psychomotor disturbance, including ‘Restless’, ‘Nervous’ and ‘Motor’, bridged depression and anxiety symptoms. The central and bridge symptoms showed variation across the school vacation.
Conclusions
The school–vacation transition had an impact on students’ depression and anxiety symptoms. Prevention and intervention strategies for adolescents’ depression and anxiety during school and vacation periods should be differentially developed.
Laser-driven inertial confinement fusion (ICF) diagnostics play a crucial role in understanding the complex physical processes governing ICF and enabling ignition. During the ICF process, the interaction between the high-power laser and ablation material leads to the formation of a plasma critical surface, which reflects a significant portion of the driving laser, reducing the efficiency of laser energy conversion into implosive kinetic energy. Effective diagnostic methods for the critical surface remain elusive. In this work, we propose a novel optical diagnostic approach to investigate the plasma critical surface. This method has been experimentally validated, providing new insights into the critical surface morphology and dynamics. This advancement represents a significant step forward in ICF diagnostic capabilities, with the potential to inform strategies for enhancing the uniformity of the driving laser and target surface, ultimately improving the efficiency of converting laser energy into implosion kinetic energy and enabling ignition.
This study aims to explore the dynamics of leadership reconfiguration within emergent state-owned enterprises (SOEs), i.e., privately owned enterprises (POEs) that have been acquired by SOEs. From an institutional logic perspective, we argue that the emergence of these SOEs reflects a process in which POEs, previously dominated by market logic, incorporate state logic and transition to a hybrid form. However, this process presents a paradox for emergent SOEs: while a greater extent of reconfiguration of leadership helps them gain greater legitimacy in front of state-related institutional referents, it also results in greater conflicts between members adhering to different logics. To address this paradox, we theorize on the differences in the reconfigurations of the board and top management team (TMT) by respectively connecting their functions to institutional control and agency, two typical forms of institutional power. Our analysis reveals that emergent SOEs tend to experience reconfiguration more in the board while less in TMT. Furthermore, we find that these main effects are moderated by the industrial state-ownership density and acquirees' preacquisition political connections. Our study contributes to the SOE and M&A literature by highlighting the uniqueness of emergent SOEs arising from POE-to-SOE acquisitions. Additionally, we propose a strategy to reconcile legitimation and internal stabilizations during logic hybridizations, thereby contributing to the institutional logic literature.
The rapid development of generative artificial intelligence (AI) systems, particularly those fuelled by increasingly advanced large language models, has raised concerns of their potential risks among policymakers globally. In July 2023, Chinese regulators enacted the Interim Measures for the Management of Generative AI Services (“the Measures”). The Measures aim to mitigate various risks associated with public-facing generative AI services, particularly those concerning information content safety and security. China’s approach to regulating AI to date has sought to address the risks associated with rapidly advancing AI technologies while fostering innovation and development. Tensions between these policy objectives are reflected in the provisions of the Measures. As Beijing moves towards establishing a comprehensive legal framework for AI governance, there will be growing interest in how China’s approach may influence AI governance and regulation at a global level.
In this paper, we propose a novel and highly effective variational Bayesian expectation maximization-maximization (VBEM-M) inference method for log-linear cognitive diagnostic model (CDM). In the implementation of the variational Bayesian approach for the saturated log-linear CDM, the conditional variational posteriors of the parameters that need to be derived are in the same distributional family as the priors, the VBEM-M algorithm overcomes this problem. Our algorithm can directly estimate the item parameters and the latent attribute-mastery pattern simultaneously. In contrast, Yamaguchi and Okada’s (2020a) variational Bayesian algorithm requires a transformation step to obtain the item parameters for the log-linear cognitive diagnostic model (LCDM). We conducted multiple simulation studies to assess the performance of the VBEM-M algorithm in terms of parameter recovery, execution time, and convergence rate. Furthermore, we conducted a series of comparative studies on the accuracy of parameter estimation for the DINA model and the saturated LCDM, focusing on the VBEM-M, VB, expectation-maximization, and Markov chain Monte Carlo algorithms. The results indicated that our method can obtain more stable and accurate estimates, especially for the small sample sizes. Finally, we demonstrated the utility of the proposed algorithm using two real datasets.
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational speed. This study introduces a novel “divide- and-conquer” parallel algorithm built on the Wasserstein posterior approximation concept, aiming to enhance computational speed while maintaining accurate parameter estimation. This algorithm enables drawing parameters from segmented data subsets in parallel, followed by an amalgamation of these parameters via Wasserstein posterior approximation. Theoretical support for the algorithm is established through asymptotic optimality under certain regularity assumptions. Practical validation is demonstrated using real-world data from the Programme for International Student Assessment. Ultimately, this research proposes a transformative approach to managing educational big data, offering a scalable, efficient, and precise alternative that promises to redefine traditional practices in educational assessments.
Asymptotic expansions of the maximum likelihood estimator (MLE) and weighted likelihood estimator (WLE) of an examinee’s ability are derived while item parameter estimators are treated as covariates measured with error. The asymptotic formulae present the amount of bias of the ability estimators due to the uncertainty of item parameter estimators. A numerical example is presented to illustrate how to apply the formulae to evaluate the impact of uncertainty about item parameters on ability estimation and the appropriateness of estimating ability using the regular MLE or WLE method.
Stimulated Raman scattering is a third-order nonlinear optical effect that is not only effective for wavelength converting laser output, but also for single longitudinal-mode output due to the absence of spatial hole burning. Diamond is a prominent Raman-active medium that has significant potential for linewidth narrowing and wavelength converting lasers at high power levels due to its high thermal conductivity, long Raman frequency shift and wide spectral transmission range. In this work we utilize diamond in a resonantly mode-matched external cavity to achieve cascaded Raman conversion of a 1064 nm laser. By fine-tuning the length of this external cavity, we can obtain narrow linewidth emission at 1240 and 1485 nm. When operating at maximum power, the measured linewidths were more than twofold narrower than the linewidth of the fundamental field. In addition, the noise levels of the Stokes fields are lower than that of the fundamental field throughout the entire noise frequency range, and the intrinsic linewidth of the second Stokes field, which is expressed at the hertz level (~3.6 Hz), is decreased by approximately three orders of magnitude compared to that of the pump. This work represents the first measurement and analysis of the linewidth and noise characteristics of cascaded diamond Raman lasers and, significantly, offers a new means by which high-power, narrow linewidth laser output can be produced from wavelength-converted laser systems.
Large-aperture gratings have significant applications in inertial confinement fusion, immersion lithography manufacturing and astronomical observation. Currently, it is challenging and expensive to manufacture sizable monolithic gratings. Therefore, tiled multiple small-aperture gratings are preferred. In this study, the impact of seam phase discontinuity on the modulation of the laser beam field was explored based on the measurement results of the Shenguang-II laser large-aperture multi-exposure-tiled grating. An innovative method for accurately calculating the phase jump of multi-exposure-tiled grating seams was proposed. An intensive electromagnetic field analysis was performed by applying rigorous coupled-wave analysis to a reasonably constructed micrometer-level periodic grating seam structure, and the phase jump appearing in millimeter-scale seams of large-aperture tiled gratings was obtained accurately.
Interlaminar delamination damage is a common and typical defect in the context of structural damage in carbon fiber-reinforced resin matrix composites. The technology to identify such damage is crucial for improving the safety and reliability of structures. In this paper, we fabricated carbon fiber-reinforced composite laminates with different degrees of delamination damage, conducted static load experiments on them and used femtosecond fiber Bragg grating sensors (fsFBG) to determine their structural state to investigate the effects of delamination damage on their performance. We constructed a model to identify damage based on the deep residual shrinkage network, and used experimental data to enable it to identify varying degrees of delamination damage to carbon fiber-reinforced composites with an accuracy of 97.98%.
Direct numerical simulations are performed to explore the evolution behaviour of the turbulent/non-turbulent interface (TNTI) in a temporally evolving turbulent plane jet, using the evolution equation for the TNTI surface area. A novel algorithm is used to calculate the surface area of the TNTI and entrainment flux. It is shown that the surface area remains relatively constant, which leads to the mean entrainment velocity being inversely proportional to the square root of time. On average, the effects of the stretching and curvature/viscous terms on the TNTI area roughly counterbalance each other, while the curvature/inviscid term associated with vortex stretching is virtually zero. More specifically, the stretching term contributes to the production of the surface area, while the curvature/viscous term is associated with a destruction in the surface area. The local effect of the curvature/viscous term exhibits high spatial intermittency with small-scale extreme/intense events, whereas the effect of the large-scale stretching term is more continuous. To shed light on the contribution of curvature/viscous term to the evolution of the surface area, we decompose it into three components. The effect of the curvature/normal diffusion term (the curvature/viscous dissipation term) in the bulging regions (the valley regions) mainly contributes to the production of the area. The continuous decrease of the average mean curvature is associated with the production of the bulging regions and the destruction of the valley regions. Finally, although the entrainment velocity is mainly dominated by the normal diffusion effect, all three components related to the viscous effect are indispensable to the production and destruction of the TNTI area. This numerical study contributes to a better understanding of the evolution of the TNTI area.
This study analyses the current literature to evaluate the effectiveness of dabrafenib and trametinib in the multi-modal treatment of anaplastic thyroid cancer (ATC).
Method
A systematic review and meta-analysis of the literature were undertaken. The primary endpoint measured was overall response rate (ORR) defined by the RECIST v1.1 guidelines. Secondary endpoints were 12-month overall survival (OS), median OS and progression-free survival (PFS).
Results
Of 656 identified reports, 8 studies were included which featured 95 patients (median age 68.5 years, 46 per cent male). Median follow-up period was 11.8 months with a 12-month OS of 51 per cent. Median OS was 10.4 months. Progression-free survival (PFS) was 6.5 months. The ORR was 71 per cent. A total of 65 patients exhibited a partial or complete response in radiological tumour size. Side effects compared favourably to other kinase inhibitors.
Conclusion
Dabrafenib and trametinib exhibit a promising tumour response with a tolerable side profile. BRAF/MEK inhibitors continue to provide robust responses in BRAF-mutated ATC. The heterogeneity and lack of controls in included studies limits the confidence in the conclusions drawn.
Paraquat, one of the most widely utilized herbicides globally, causes a significant environmental challenge due to its poor degradation rate and tendency to adsorb into clay interlayers. Several remediation methods have been proposed but their effectiveness remains suboptimal. The primary reason for this is the lack of microscopic understanding of paraquat–montmorillonite interactions. In this work molecular dynamics simulations were applied to study the interlayer structures and mobility of paraquat intercalated montmorillonite. Two stable hydration states were identified from the calculated immersion energy curve, which corresponded to a water content of 185 mgwater/gclay and 278 mgwater/gclay (the most stable). Paraquats remained in direct contact with the clay surface in both the anhydrous and hydrated states. At the water content of 185 mgwater/gclay, paraquats formed π-π stacking while at 278 mgwater/gclay, they were separated by a layer of water. Paraquat showed very small self-diffusion coefficients in the interlayer space of montmorillonite, indicating rather limited motions. The results in this work provide a basis for a better understanding of the interaction of paraquat with clay minerals.