We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study presents a novel investigation into the vortex dynamics of flow around a near-wall rectangular cylinder based on direct numerical simulation at $Re=1000$, marking the first in-depth exploration of these phenomena. By varying aspect ratios ($L/D = 5$, $10$, $15$) and gap ratios ($G/D = 0.1$, $0.3$, $0.9$), the study reveals the vortex dynamics influenced by the near-wall effect, considering the incoming laminar boundary layer flow. Both $L/D$ and $G/D$ significantly influence vortex dynamics, leading to behaviours not observed in previous bluff body flows. As $G/D$ increases, the streamwise scale of the upper leading edge (ULE) recirculation grows, delaying flow reattachment. At smaller $G/D$, lower leading edge (LLE) recirculation is suppressed, with upper Kelvin–Helmholtz vortices merging to form the ULE vortex, followed by instability, differing from conventional flow dynamics. Larger $G/D$ promotes the formation of an LLE shear layer. An intriguing finding at $L/D = 5$ and $G/D = 0.1$ is the backward flow of fluid from the downstream region to the upper side of the cylinder. At $G/D = 0.3$, double-trailing-edge vortices emerge for larger $L/D$, with two distinct flow behaviours associated with two interactions between gap flow and wall recirculation. These interactions lead to different multiple flow separations. For $G/D = 0.9$, the secondary vortex (SV) from the plate wall induces the formation of a tertiary vortex from the lower side of the cylinder. Double-SVs are observed at $L/D = 5$. Frequency locking is observed in most cases, but is suppressed at $L/D = 10$ and $G/D = 0.9$, where competing shedding modes lead to two distinct evolutions of the SV.
Recent studies have increasingly utilized gradient metrics to investigate the spatial transitions of brain organization, enabling the conversion of macroscale brain features into low-dimensional manifold representations. However, it remains unclear whether alterations exist in the cortical morphometric similarity (MS) network gradient in patients with schizophrenia (SCZ). This study aims to examine potential differences in the principal MS gradient between individuals with SCZ and healthy controls and to explore how these differences relate to transcriptional profiles and clinical phenomenology.
Methods
MS network was constructed in this study, and its gradient of the network was computed in 203 patients with SCZ and 201 healthy controls, who shared the same demographics in terms of age and gender. To examine irregularities in the MS network gradient, between-group comparisons were carried out, and partial least squares regression analysis was used to study the relationships between the MS network gradient-based variations in SCZ, and gene expression patterns and clinical phenotype.
Results
In contrast to healthy controls, the principal MS gradient of patients with SCZ was primarily significantly lower in sensorimotor areas, and higher in more areas. In addition, the aberrant gradient pattern was spatially linked with the genes enriched for neurobiologically significant pathways and preferential expression in various brain regions and cortical layers. Furthermore, there were strong positive connections between the principal MS gradient and the symptomatologic score in SCZ.
Conclusions
These findings showed changes in the principal MS network gradient in SCZ and offered potential molecular explanations for the structural changes underpinning SCZ.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
Aiming to address the issue of low accuracy in model predictions obtained from fitting frequency domain response curves for small unmanned helicopters during the process of modeling their flight dynamics, this study proposes a system identification algorithm based on the combination of weighted least squares and improved grey wolf optimisation algorithm. The algorithm utilises the weighted least squares method to obtain the initial model structure, optimises the initial model parameters using the improved grey wolf optimisation algorithm, and enhances the local search and global optimisation ability of the grey wolf optimisation algorithm by introducing an improved grey wolf subgrouping rule, nonlinear convergence factor and dynamic cooperative rule. Ultimately, this approach establishes a dynamic model for small, unmanned helicopters. The identified model is validated using flight test data, with findings demonstrating that this method achieves higher accuracy in model identification and better fits to frequency domain response curves, thus providing a more accurate reflection of the flight dynamics of small unmanned helicopters.
This paper provides a statistical framework for estimating higher-order characteristics of the response time distribution, such as the scale (variability) and shape. Consideration of these higher order characteristics often provides for more rigorous theory development in cognitive and perceptual psychology (e.g., Luce, 1986). RT distribution for a single participant depends on certain participant characteristics, which in turn can be thought of as arising from a distribution of latent variables. The present work focuses on the three-parameter Weibull distribution, with parameters for shape, scale, and shift (initial value). Bayesian estimation in a hierarchical framework is conceptually straightforward. Parameter estimates, both for participant quantities and population parameters, are obtained through Markov Chain Monte Carlo methods. The methods are illustrated with an application to response time data in an absolute identification task. The behavior of the Bayes estimates are compared to maximum likelihood (ML) estimates through Monte Carlo simulations. For small sample size, there is an occasional tendency for the ML estimates to be unreasonably extreme. In contrast, by borrowing strength across participants, Bayes estimation “shrinks” extreme estimates. The results are that the Bayes estimators are more accurate than the corresponding ML estimators.
Large-aperture gratings have significant applications in inertial confinement fusion, immersion lithography manufacturing and astronomical observation. Currently, it is challenging and expensive to manufacture sizable monolithic gratings. Therefore, tiled multiple small-aperture gratings are preferred. In this study, the impact of seam phase discontinuity on the modulation of the laser beam field was explored based on the measurement results of the Shenguang-II laser large-aperture multi-exposure-tiled grating. An innovative method for accurately calculating the phase jump of multi-exposure-tiled grating seams was proposed. An intensive electromagnetic field analysis was performed by applying rigorous coupled-wave analysis to a reasonably constructed micrometer-level periodic grating seam structure, and the phase jump appearing in millimeter-scale seams of large-aperture tiled gratings was obtained accurately.
Direct numerical simulations are performed to explore the evolution behaviour of the turbulent/non-turbulent interface (TNTI) in a temporally evolving turbulent plane jet, using the evolution equation for the TNTI surface area. A novel algorithm is used to calculate the surface area of the TNTI and entrainment flux. It is shown that the surface area remains relatively constant, which leads to the mean entrainment velocity being inversely proportional to the square root of time. On average, the effects of the stretching and curvature/viscous terms on the TNTI area roughly counterbalance each other, while the curvature/inviscid term associated with vortex stretching is virtually zero. More specifically, the stretching term contributes to the production of the surface area, while the curvature/viscous term is associated with a destruction in the surface area. The local effect of the curvature/viscous term exhibits high spatial intermittency with small-scale extreme/intense events, whereas the effect of the large-scale stretching term is more continuous. To shed light on the contribution of curvature/viscous term to the evolution of the surface area, we decompose it into three components. The effect of the curvature/normal diffusion term (the curvature/viscous dissipation term) in the bulging regions (the valley regions) mainly contributes to the production of the area. The continuous decrease of the average mean curvature is associated with the production of the bulging regions and the destruction of the valley regions. Finally, although the entrainment velocity is mainly dominated by the normal diffusion effect, all three components related to the viscous effect are indispensable to the production and destruction of the TNTI area. This numerical study contributes to a better understanding of the evolution of the TNTI area.
The seminal Bolgiano–Obukhov (BO) theory established the fundamental framework for turbulent mixing and energy transfer in stably stratified fluids. However, the presence of BO scalings remains debatable despite their being observed in stably stratified atmospheric layers and convective turbulence. In this study, we performed precise temperature measurements with 51 high-resolution loggers above the seafloor for 46 h on the continental shelf of the northern South China Sea. The temperature observation exhibits three layers with increasing distance from the seafloor: the bottom mixed layer (BML), the mixing zone and the internal wave zone. A BO-like scaling $\alpha =-1.34\pm 0.10$ is observed in the temperature spectrum when the BML is in a weakly stable stratified ($N\sim 0.0018$ rad s$^{-1}$) and strongly sheared ($Ri\sim 0.0027$) condition, whereas in the unstably stratified convective turbulence of the BML, the scaling $\alpha =-1.76\pm 0.10$ clearly deviated from the BO theory but approached the classical $-$5/3 scaling in isotropic turbulence. This suggests that the convective turbulence is not the promise of BO scaling. In the mixing zone, where internal waves alternately interact with the BML, the scaling follows the Kolmogorov scaling. In the internal wave zone, the scaling $\alpha =-2.12 \pm 0.15$ is observed in the turbulence range and possible mechanisms are provided.
Folate metabolism is involved in the development and progression of various cancers. We investigated the association of single nucleotide polymorphisms (SNP) in folate-metabolising genes and their interactions with serum folate concentrations with overall survival (OS) and liver cancer-specific survival (LCSS) of newly diagnosed hepatocellular carcinoma (HCC) patients. We detected the genotypes of six SNP in three genes related to folate metabolism: methylenetetrahydrofolate reductase (MTHFR), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR) and 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR). Cox proportional hazard models were used to calculate multivariable-adjusted hazard ratios (HR) and 95 % CI. This analysis included 970 HCC patients with genotypes of six SNP, and 864 of them had serum folate measurements. During a median follow-up of 722 d, 393 deaths occurred, with 360 attributed to HCC. In the fully-adjusted models, the MTRR rs1801394 polymorphism was significantly associated with OS in additive (per G allele: HR = 0·84, 95 % CI: 0·71, 0·99), co-dominant (AG v. AA: HR = 0·77; 95 % CI: 0·62, 0·96) and dominant (AG + GG v. AA: HR = 0·78; 95 % CI: 0·63, 0·96) models. Carrying increasing numbers of protective alleles was linked to better LCSS (HR10–12 v. 2–6 = 0·70; 95 % CI: 0·49, 1·00) and OS (HR10–12 v. 2–6 = 0·67; 95 % CI: 0·47, 0·95). Furthermore, we observed significant interactions on both multiplicative and additive scales between serum folate levels and MTRR rs1801394 polymorphism. Carrying the variant G allele of the MTRR rs1801394 is associated with better HCC prognosis and may enhance the favourable association between higher serum folate levels and improved survival among HCC patients.
Despite mounting evidence linking neurological diseases with climate change, the link between autism spectrum disorder (ASD) and global warming has yet to be explored.
Aims
To examine the relationship between the incidence of ASD and global warming from 1990 to 2019 and estimate the trajectory of ASD incidence from 2020 to 2100 globally.
Method
We extracted meteorological data from TerraClimate between 1990 and 2019. To estimate the association between global ASD incidence and temperature variation, we adopted a two-stage analysis strategy using a generalised additive regression model. Additionally, we projected future ASD incidence under four representative shared socioeconomic pathways (SSPs: 126, 245, 370 and 585) by bootstrapping.
Results
Between 1990 and 2019, the global mean incidence of ASD in children under 5 years old was 96.9 per 100 000. The incidence was higher in males (147.5) than in females (46.3). A 1.0 °C increase in the temperature variation was associated with a 3.0% increased risk of ASD incidence. The association was stronger in boys and children living in a low/low-middle sociodemographic index region, as well as in low-latitude areas. According to the SSP585 scenario, by 2100, the children living in regions between 10 and 20° latitude, particularly in Africa, will experience a 68.6% increase in ASD incidence if the association remains. However, the SSP126 scenario is expected to mitigate this increase, with a less than 10% increase in incidence across all latitudes.
Conclusions
Our study highlights the association between climate change and ASD incidence worldwide. Prospective studies are warranted to confirm the association.
We report on an improved ytterbium-doped yttrium aluminum garnet thin-disk multi-pass amplifier for kilowatt-level ultrafast lasers, showcasing excellent beam quality. At a repetition rate of 800 kHz, the 6.8 ps, 276 W seed laser is amplified up to an average power of 1075 W, corresponding to a pulse energy of 1.34 mJ. The 36-pass amplifier is designed as a compact mirror array in which the beam alternately propagates between the mirrors and the disk by a quasi-collimated state. We adopted a quasi-collimated propagation to confine stray and diffracted light by the slight curvature of the disk, which enables us to achieve an outstanding extraction efficiency of up to 57% with excellent beam quality in stable laser operation at high power. The beam quality at 1075 W was measured to be M2 < 1.51. Furthermore, stability testing was demonstrated with a root-mean-square power fluctuation of less than 1.67% for 10 min.
This paper presents a comprehensive technical overview of the Linac Coherent Light Source II (LCLS-II) photoinjector laser system, its first and foremost component. The LCLS-II photoinjector laser system serves as an upgrade to the original LCLS at SLAC National Accelerator Laboratory. This advanced laser system generates high-quality laser beams for the LCLS-II, contributing to the instrument’s unprecedented brightness, precision and flexibility. Our discussion extends to the various subsystems that comprise the photoinjector, including the photocathode laser, laser heater and beam transport systems. Lastly, we draw attention to the ongoing research and development infrastructure underway to enhance the functionality and efficiency of the LCLS-II, and similar X-ray free-electron laser facilities around the world, thereby contributing to the future of laser technology and its applications.
Many studies have demonstrated that teaching a foreign language in settings outside of the classroom can improve the communicative use of the target language. However, many places remain inaccessible to learners due to physical limits of mobility and health, socioeconomic factors, or political or temporal restraints. Our previous studies have shown that telepresence robots are successful in immersing learners in remote places for learning a foreign language. The aim of this study is to analyze, through the theoretical lens of geosemiotics, how dialogic interaction between different semiotic systems emerges within the use of telepresence technology to understand how these systems shape discourse and meaning-making processes. It also considers what instructional strategies support such meaning-making with telepresence robotics, and what meaning-making principles can help improve the design of the robot. Initial findings show that properly planning the use of specific places provides ample opportunity for semiotic systems to shape the instructors’ and students’ meaning-making processes. Future research is needed to address some of the challenges to participants that are related to the design of the robot.
The numerical investigation focuses on the flow patterns around a rectangular cylinder with three aspect ratios ($L/D=5$, $10$, $15$) at a Reynolds number of $1000$. The study delves into the dynamics of vortices, their associated frequencies, the evolution of the boundary layer and the decay of the wake. Kelvin–Helmholtz (KH) vortices originate from the leading edge (LE) shear layer and transform into hairpin vortices. Specifically, at $L/D=5$, three KH vortices merge into a single LE vortex. However, at $L/D=10$ and $15$, two KH vortices combine to form a LE vortex, with the rapid formation of hairpin vortex packets. A fractional harmonic arises due to feedback from the split LE shear layer moving upstream, triggering interaction with the reverse flow. Trailing edge (TE) vortices shed, creating a Kármán-like street in the wake. The intensity of wake oscillation at $L/D=5$ surpasses that in the other two cases. Boundary layer transition occurs after the saturation of disturbance energy for $L/D=10$ and $15$, but not for $L/D=5$. The low-frequency disturbances are selected to generate streaks inside the boundary layer. The TE vortex shedding induces the formation of a favourable pressure gradient, accelerating the flow and fostering boundary layer relaminarization. The self-similarity of the velocity defect is observed in all three wakes, accompanied by the decay of disturbance energy. Importantly, the decrease in the shedding frequency of LE (TE) vortices significantly contributes to the overall decay of disturbance energy. This comprehensive exploration provides insights into complex flow phenomena and their underlying dynamics.
Accurately predicting neurosyphilis prior to a lumbar puncture (LP) is critical for the prompt management of neurosyphilis. However, a valid and reliable model for this purpose is still lacking. This study aimed to develop a nomogram for the accurate identification of neurosyphilis in patients with syphilis. The training cohort included 9,504 syphilis patients who underwent initial neurosyphilis evaluation between 2009 and 2020, while the validation cohort comprised 526 patients whose data were prospectively collected from January 2021 to September 2021. Neurosyphilis was observed in 35.8% (3,400/9,504) of the training cohort and 37.6% (198/526) of the validation cohort. The nomogram incorporated factors such as age, male gender, neurological and psychiatric symptoms, serum RPR, a mucous plaque of the larynx and nose, a history of other STD infections, and co-diabetes. The model exhibited good performance with concordance indexes of 0.84 (95% CI, 0.83–0.85) and 0.82 (95% CI, 0.78–0.86) in the training and validation cohorts, respectively, along with well-fitted calibration curves. This study developed a precise nomogram to predict neurosyphilis risk in syphilis patients, with potential implications for early detection prior to an LP.
Adherence to post-exposure prophylaxis and post-exposure vaccination (PEV) is an important measure to prevent rabies. The purpose of this study was to explore the adherence to the vaccination protocol and its influencing factors among rabies-exposed patients in Shenzhen, China. A cross-sectional survey was conducted in a tertiary hospital in Shenzhen, China, to obtain epidemiological characteristics of patients; knowledge, attitude, and practice scores of rabies prevention; and medical records. A total of 326 patients requiring full rabies PEV were included in this study, and only 62% (202) completed the full course of vaccination according to the norms of the vaccination guidelines. After multifactor logistic regression, the factors influencing adherence to vaccination were as follows: age 31 to 40 years, time spent to reach the nearest rabies prevention clinic was >60 min, the time of injury was at night to early morning, the place of injury was a school/laboratory, the animal causing injury was a cat, the health status of the animal causing injury could not be determined, and patients with higher practice scores (all p<0.05). Understanding the factors influencing rabies vaccination adherence among rabies-exposed patients in urban areas of China and promote changes in patients’ practice toward rabies prevention is essential for rabies elimination by 2030.
Interlayer swelling of hydrated montmorillonite is an important issue in clay mineralogy. Although the swelling behavior of montmorillonite under ambient conditions has been investigated comprehensively, the effects of basin conditions on the hydration and swelling behaviors of montmorillonite have not been characterized thoroughly. In the present study, molecular dynamics simulations were employed to reveal the swelling behavior and changes in the interlayer structure of Na-montmorillonite under the high temperatures and pressures of basin conditions. According to the calculation of the immersion energy, the monolayer hydrate becomes more stable than the bilayer hydrate at a burial depth of 7 km (at a temperature of 518 K and a lithostatic pressure of 1.04 kbar). With increasing burial depth, the basal spacings of the monolayer and bilayer hydrates change to varying degrees. The density-distribution profiles of interlayer species exhibit variation in the hydrate structures due to temperature and pressure change, especially in the structures of bilayer hydrate. With increasing depth, more Na+ ions prefer to distribute closer to the clay layers. The mobility of interlayer water and ions increases with increasing temperature, while increasing pressure caused the mobility of these ions to decrease.
Fe is a common substituent in palygorskites (Plg), but its effect on the microscopic properties is unclear. In the current study, molecular dynamics (MD) simulations were carried out to investigate the effect of Fe on the properties of the nano-pores in Plg. The structures and dynamics of water and Na+ ions in the pores were computed by analyzing the MD trajectories. The results revealed that for both Fe-containing and ordinary Plg, zeolitic water molecules can diffuse into the pores with very low mobility whereas Mg-coordinated water fails to escape. Na+ ions show no obvious diffusivity because they are fixed above the Si–Osix-membered rings. Detailed comparison indicates that Fe-substitution has no significant influence on the pore properties of Plg.
Landfill leachate is one of the most difficult effluents with which to deal from an environmental perspective because of its concentration and complex composition, including refractory and toxic components such as heavy metals or xenobiotic organic compounds. The objective of the present study was to use organically modified bentonite (OMB) to dispose of landfill leachate >10 y old. The OMB was synthesized using a new method, which removed four steps (filtering, washing, drying, and grinding) from the traditional process. After treatment using OMB, the chemical oxygen demand concentration (COD concentration, an index of the organic pollutants in the landfill leachate, was determined using the potassium dichromate method) of the landfill leachate sample decreased from 2400 to 245 mg/L in 5 h, i.e. the organic pollutants reduction efficiency was as high as 90%. Gas chromatography-mass spectrometry results indicated that most of the organic compounds were removed during the process. The modified and unmodified bentonite contained in the OMB deal with the hydrophobic and hydrophilic organic pollutants, respectively, resulting in significant degradation of the leachate. The study results have provided a new cost-effective method for treatment of landfill leachate.