We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To characterize the temporal progression of the monthly incidence of Clostridium difficile infections (CDIs) and to determine whether the incidence of CDI is related to the incidence of seasonal influenza.
Design.
A retrospective study of patients in the Nationwide Inpatient Sample during the period from 1998 through 2005.
Methods.
We identified all hospitalizations with a primary or secondary diagnosis of CDI with use of International Classification of Diseases, 9th Revision, Clinical Modification codes, and we did the same for influenza. The incidence of CDI was modeled as an autoregression about a linear trend. To investigate the association of CDI with influenza, we compared national and regional CDI and influenza series data and calculated cross-correlation functions with data that had been prewhitened (filtered to remove temporal patterns common to both series). To estimate the burden of seasonal CDI, we developed a proportional measure of seasonal CDI.
Results.
Time-series analysis of the monthly number of CDI cases reveals a distinct positive linear trend and a clear pattern of seasonal variation (R2 = 0.98). The cross-correlation functions indicate that influenza activity precedes CDI activity on both a national and regional basis. The average burden of seasonal (ie, winter) CDI is 23%.
Conclusions.
The epidemiologic characteristics of CDI follow a pattern that is seasonal and associated with influenza, which is likely due to antimicrobial use during influenza seasons. Approximately 23% of average monthly CDI during the peak 3 winter months could be eliminated if CDI remained at summer levels.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.