We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In 2010, we published our stroke prevention clinic’s performance as compared to Canadian stroke prevention guidelines. We now compare our clinic’s adherence with guidelines to our previous results, following the implementation of an electronic documentation form.
Methods
All new patients referred to our clinic (McGill University Health Center) for recent transient ischemic attack (TIA) or ischemic stroke between 2014 and 2017 were included. We compared adherence to guidelines to our previous report (N=408 patients for period 2008–2010) regarding vascular risk management and treatment.
Results
Three hundred and ninety-two patients were included, of which 36% had a TIA and 64% had an ischemic stroke, with a mean age of 70 years and 43% female. Although the more recent cohort has shown a higher proportion of cardioembolic stroke compared to previous (19.1% vs. 14.7%) following new guidelines regarding prolonged cardiac monitoring, increased popularity in CT angiography has not translated into greater proportion of large-artery stroke subtype (26.3% vs. 26.2%). Blood pressure (BP) targets were achieved in 83% compared with 70% in our previous report (p<0.01). Attainment of low-density lipoprotein cholesterol target was also improved in our recent study (66% vs. 46%, p<0.01). No significant difference was found in the consistency of antithrombotic use (97.7% vs. 99.8%, p=0.08). However, there was a decline in smoking cessation (35% vs. 73%, p=0.02). Overall, optimal therapy status was better attained in the present cohort compared to the previous one (52% vs. 22%, p<0.01). The male sex was associated with better attainment of optimal therapy status (odds ratio, 1.61; 95% confidence interval, 1.04–2.51). The number of follow-up visits and the length of follow-up were not associated with attainment of stroke prevention targets.
Conclusions
Our study shows improvement in attainment of therapeutic goals as recommended by Canadian stroke prevention guidelines, possibly attributed in part to the implementation of electronic medical recording in our clinic. Areas for improvement include smoking cessation counseling and diabetes screening.
Few studies have assessed the performance of stroke prevention clinics. In particular, limited information exists on patient compliance, achievement of therapeutic targets, and related occurrence of vascular events.
Methods
We compared our clinical practice to recommendations from published guidelines in newly referred patients for transient ischemic attack (TIA) or ischemic stroke between 2008 and 2010. We monitored our cohort for at least 1 year and assessed for adequacy of vascular risk factor management, drug adherence, and occurrence of nonlethal vascular outcomes.
Results
Of 408 patients, 57.8% had a stroke and 42.2% a TIA. The mean age was 68±13 years, and 52% male. Average follow-up was 15.8 months. During follow-up, 253 patients (70.3%) completely achieved their blood pressure target, 151 (45.5%) achieved their low-density lipoprotein (LDL) cholesterol target, and 407 (99.8%) were on antithrombotics. Eighty-nine patients (21.8%) attained optimal therapy status, defined as reaching targets for LDL cholesterol, blood pressure, and antithrombotic use. Adherence to drug therapy was associated with attainment of optimal therapy status (p=0.01). Diabetes was associated with lower probability of attaining optimal therapy status (odds ratio [OR], 0.36; 95% confidence interval [CI], 0.20-0.66) and blood pressure targets (OR, 0.09; 95% CI, 0.05-0.17). During follow-up, 52 (12.7%) patients had a nonlethal vascular event.
Conclusion
Our study shows good attainment of therapeutic goals associated with adherence to drug therapy. However, optimal therapy status and blood pressure targets were more difficult to attain in patients with diabetes; therefore, more intensive preventive efforts may be required for these individuals.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.