We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Despite advances in incorporating diversity and structural competency into medical education curriculum, there is limited curriculum for public health research professionals. We developed and implemented a four-part diversity, equity, and inclusion (DEI) training series tailored for academic health research professionals to increase foundational knowledge of core diversity concepts and improve skills.
Methods:
We analyzed close- and open-ended attendee survey data to evaluate within- and between-session changes in DEI knowledge and perceived skills.
Results:
Over the four sessions, workshop attendance ranged from 45 to 82 attendees from our 250-person academic department and represented a mix of staff (64%), faculty (25%), and trainees (11%). Most identified as female (74%), 28% as a member of an underrepresented racial and ethnic minority (URM) group, and 17% as LGBTQI. During all four sessions, attendees increased their level of DEI knowledge, and within sessions two through four, attendees’ perception of DEI skills increased. We observed increased situational DEI awareness as higher proportions of attendees noted disparities in mentoring and opportunities for advancement/promotion. An increase in a perceived lack of DEI in the workplace as a problem was observed; but only statistically significant among URM attendees.
Discussion:
Developing applied curricula yielded measurable improvements in knowledge and skills for a diverse health research department of faculty, staff, and students. Nesting this training within a more extensive program of departmental activities to improve climate and address systematic exclusion likely contributed to the series’ success. Additional research is underway to understand the series’ longer-term impact on applying skills for behavior change.
Maternal fish consumption exposes the fetus to beneficial nutrients and potentially adverse neurotoxicants. The current study investigated associations between maternal fish consumption and child neurodevelopmental outcomes. Maternal fish consumption was assessed in the Seychelles Child Development Study Nutrition Cohort 1 (n 229) using 4-day food diaries. Neurodevelopment was evaluated at 9 and 30 months, and 5 and 9 years with test batteries assessing twenty-six endpoints and covering multiple neurodevelopmental domains. Analyses used multiple linear regression with adjustment for covariates known to influence child neurodevelopment. This cohort consumed an average of 8 fish meals/week and the total fish intake during pregnancy was 106·8 (sd 61·9) g/d. Among the twenty-six endpoints evaluated in the primary analysis there was one beneficial association. Children whose mothers consumed larger quantities of fish performed marginally better on the Kaufman Brief Intelligence Test (a test of nonverbal intelligence) at age 5 years (β 0·003, 95 % CI (0, 0·005)). A secondary analysis dividing fish consumption into tertiles found no significant associations when comparing the highest and lowest consumption groups. In this cohort, where fish consumption is substantially higher than current global recommendations, maternal fish consumption during pregnancy was not beneficially or adversely associated with children’s neurodevelopmental outcomes.
Anecdotally, secondary post-tonsillectomy haemorrhage tends to occur out-of-hours. This study sought to establish whether there is a link between haemorrhage and time of day, and examined correlations with month and with monthly temperature.
Methods
Data were obtained for patients in our hospital undergoing surgical arrest of secondary post-tonsillectomy haemorrhage between January 2002 and December 2020. Haemorrhage timing was categorised into daytime (07:00–18:00), evening (18:00–22:00) and overnight (22:00–07:00). The chi-square test was used to assess diurnal and monthly variation in haemorrhage rates (p < 0.05). Pearson's correlation test was used to analyse monthly haemorrhage rates and average monthly temperature.
Results
Fifty per cent of patients suffered post-tonsillectomy haemorrhage overnight and 28.1 per cent haemorrhaged in the evening, representing a significant difference (p = 0.018). The highest rate of haemorrhage was in July (2.96 per cent), which was statistically significant (p = 0.0024). There was a positive correlation between average monthly temperature and haemorrhage rate (Pearson's correlation = 0.478, p = 0.116004), although this was not significant.
Conclusion
Most post-tonsillectomy haemorrhages occur out-of-hours (78.1 per cent), which could be conveyed during the consent process. The haemorrhage rate is lower in winter, which may influence planned operating theatre scheduling.
Approximately, 1.7 million individuals in the United States have been infected with SARS-CoV-2, the virus responsible for the novel coronavirus disease-2019 (COVID-19). This has disproportionately impacted adults, but many children have been infected and hospitalised as well. To date, there is not much information published addressing the cardiac workup and monitoring of children with COVID-19. Here, we share the approach to the cardiac workup and monitoring utilised at a large congenital heart centre in New York City, the epicentre of the COVID-19 pandemic in the United States.
Weed competition severely constrains cassava root yield in sub-Saharan Africa; thus, good weed control measures, including the use of herbicides, are increasingly important. Herbicide trials were conducted at five locations across eastern, western, and north-central Nigeria over two cropping seasons (2014 and 2015). Nineteen premixed PRE herbicides applied at different rates were evaluated for efficacy on weeds and selectivity on cassava. Manual hoe-weeding at 4, 8, and 12 wk after planting (WAP) and two S-metolachlor + atrazine treatments commonly used by cassava growers were included for comparison. Six of the 19 PRE herbicide treatments (indaziflam + isoxaflutole, indaziflam + metribuzin, flumioxazin + pyroxasulfone, isoxaflutole, acetochlor + atrazine + terbuthylazine, and terbuthylazine + S-metolachlor) consistently provided 80% to 98% broadleaf and grass weed control up to 8 wk after treatment. Overall, PRE herbicide treatments and cassava yield were significantly positively correlated. Herbicide treatments terbuthylazine + S-metolachlor, flumioxazin + pyroxasulfone, diflufenican + flufenacet + flurtamone (respectively, 60 + 60 + 60, 120 + 120 + 120, 90 + 360 + 120, and 135 + 360 + 180 g ha−1), acetochlor + atrazine + terbuthylazine (875 + 875 + 875 g ha−1), S-metolachlor + atrazine (870 + 1,110 g ha−1), oxyfluorfen (240 g ha−1), indaziflam + isoxaflutole (75 + 225 g ha−1), indaziflam + metribuzin (75 + 960 g ha−1), and aclonifen + isoxaflutole (500 + 75 g ha−1) contributed to yields exceeding twice the Nigerian national average of 8.76 tonnes ha−1. These treatments had root yields of 1.4 to 2 times higher than plots that had been hoe-weeded three times. There were some adverse herbicide treatment effects such as delayed cassava sprouting and temporary leaf bleaching observed in indaziflam and diflufenican + flufenacet + flurtamone treatments, whereas sulfentrazone caused prolonged leaf crinkling. The PRE applications alone at rates safe for cassava did not provide adequate season-long weed control; supplemental POST weed control is needed about 10 WAP for satisfactory season-long control.
This study aimed to evaluate the transcriptional changes occurring in isolated perfused mammary alveolar tissue in response to inoculation with S. agalactiae and to identify the most affected biological functions and pathways after 3 h. Four udders taken at slaughter from cows with healthy mammary gland were perfused ex situ with warmed and gassed Tyrode's solution. Mammary alveolar tissue samples were taken from the left fore and rear quarters (IQ-inoculated quarters) before inoculation (hour 0) and at 3 h post inoculation (hpi) and at the same times from control right fore and rear quarters (not inoculated: NIQ). A total of 1756 differentially expressed genes (DEGs) were identified between IQ and NIQ at 3 hpi using edgeR package. Within this set of DEGs, 952 were up regulated and mainly involved with innate immune response and inflammatory response, e.g., CD14, CCL5, TLR2, IL-8, SAA3, as well as in transcriptional regulation such as FOS, STAT3 and NFKBIA. Genes down-regulated (804) included those involved with lipid synthesis e.g., APOC2, SCD, FABP3 and FABP4. The most affected pathways were chemokine signaling, Wnt signaling and complement and coagulation cascades, which likely reflects the early stage response of mammary tissue to S. agalactiae infection. No significant gene expression changes were detected by RNA-Seq in the others contrasts. Real time-PCR confirmed the increase in mRNA abundance of immune-related genes: TLR2, TLR4, IL-1β, and IL-10 at 3 hpi between IQ and NIQ. The expression profiles of Casp1 and Bax for any contrasts were unaffected whereas Bcl2 was increased in IQ, which suggests no induction of apoptosis during the first hours after infection. Results provided novel information regarding the early functional pathways and gene network that orchestrate innate immune responses to S. agalactiae infection. This knowledge could contribute to new strategies to enhance resistance to this disease, such as genomic selection.
Background: Challenges in predicting risk of recurrence for individual patients with meningioma limits appropriate selection of patients who may benefit from adjuvant radiation therapy to delay recurrence. Here, we aimed to develop and validate a combined clinicomolecular predictor of early recurrence for individual patients with meningiomas. Methods: A methylation-based predictor of 5-year recurrence-free-survival (RFS) was developed using DNA-methylation profiles from a training cohort of 228 patients. Model performance was compared to a standard-of-care histological-based model using three independent cohorts (N=54 ;N=140; N=64 patients). Subsequently, a nomogram that integrated the methylome-based predictor with prognostic clinical factors was developed and validated. Results: The methylome-based predictor of 5-year RFS performed favorably compared to a grade-based predictor when tested using the three validation cohorts (ΔAUC=0.10, 95%CI 0.03 – 0.018) and was independently associated with RFS on multivariable Cox regression analysis (HR=3.6, 95%CI 1.8–7.2, P<0.001). A nomogram combining the methylome-predictor with clinical factors demonstrated greater discrimination for recurrence than a nomogram using clinical factors alone (ΔAUC=0.25, 95%CI 0.22–0.27) and resulted in two risk groups with distinct recurrence patterns (HR=7.7, 95%CI 5.3–11.1, P<0.001) and clinical implications. Conclusions: Our validated models provide important novel prognostic information that could be used to individualize decisions regarding post-operative therapeutic interventions in meningioma.
Bohseite is an orthorhombic calcium beryllium aluminosilicate with variable Al content and an endmember formula Ca4Be4Si9O24(OH4), that was discovered in the Piława Górna quarry in the eastern part of the Góry Sowie Block, ∼50 km southwest of Wrocław, SW Poland. It occurs in a zoned anatectic pegmatite dyke in close association with microcline, Cs-rich beryl, phenakite, helvite, 'lepidolite', probably bertrandite and unidentified Be-containing mica as alteration products after a primary Be mineral, probably beryl. Bohseite forms fan-like or parallel aggregates (up to 0.7 cm) of white, platy crystals (up to 2 mm long) with characteristic striations. It is white with a white streak, is translucent and has a vitreous lustre; it does not fluoresce under ultraviolet light. The cleavage is perfect on {001} and fair on {010}, and neither parting nor twinning was observed. Bohseite is brittle with a splintery fracture and Mohs hardness is 5–6. The calculated density is 2.719 g cm–3. The indices of refraction are α= 1.579, β = 1.580,γ = 1.597, all ±0.002; 2Vobs = 24(3)°, 2Vcalc = 27°; the optic orientation is as follows: X ^ a = 16.1°, Y ^ b = 16.1°, Z // c Bohseite shows orthorhombic diffraction symmetry, space group Cmcm, a = 23.204(6), b = 4.9442(9), c = 19.418(6) Å, V = 2227.7(4) Å3, Z = 4. The crystal structure was refined to an R1 value of 2.17% based on single-crystal data, and the chemical composition was determined by electron-microprobe analysis. Bohseite is isostructural with bavenite. Bohseite was originally approved with an end-member composition of Ca4Be3AlSi9O25(OH)3, but subsequent discovery of compositions with Be > 3.0 apfu led to redefinition of its end-member composition, holotype sample and locality, as reported here. There is extensive solid solution in bavenite–bohseite according to the scheme O(2)OH– + T(4)Si4+ + T(3)Be2+ ↔ O(2)O2– + T(4)Al3++ T(3)Si4+, and a general formula for the bavenite–bohseite minerals may be written as Ca4BexSi9Al4–xO28–x(OH)x, where x ranges from 2–4 apfu: Ca4Be2Si9Al2O26(OH)2 (bavenite) to Ca4Be4Si9O24(OH)4 (bohseite).
The new mineral hansesmarkite (IMA2015-067), Ca2Mn2Nb6O19·20H2O, was discovered at the AS Granit larvikite quarry in Tvedalen, Larvik, Vestfold, Norway. Hansesmarkite forms faintly yellow crystals up to 0.3 mm or thin coatingsin patches on gonnardite. Hansesmarkite is biaxial (+) with refractive indices (white light): α = 1.683(2), β = 1.698(2) and γ = 1.745(3); 2V(meas.) = 60.7(6)° and 2V(calc.) = 60.3°. The mineral exhibits moderate dispersion (r > v)and is pleochroic with X (almost colourless) < Y ( pale yellow) << Z (orangey yellow). The optical orientation is X ^ c = 20°, Y ^ b = 16° and Z ^ a = 5°. The empirical formula based on five electron probemicroanalyses and calculated based on Nb = 6 apfu is (Ca1.93Na0.02K0.01)∑1.96(Mn1.79Fe0.11)∑1.90Nb6O18.84·20H2O, with H2O determined from the structure solution.The mineral is triclinic, P1, with a = 9.081(4), b = 9.982(8), c = 10.60(1) Å, α = 111.07(8), β = 101.15(6), γ = 99.39(5)°, V = 850.8(13) Å3 and Z = 1. The structure was solved at 120 K because of thermalinstability of the mineral and refined to R1 = 2.50% for Fo > 4σ. The strongest reflections in the x-ray diffraction diagram are: [dobs. in Å (I)(hkl)] 9.282(36)(001), 8.610(100)(100, 011), 3.257(30)(031, 131)and 3.058(18)(130, 212). Hansesmarkite is the third naturally occurring hexaniobate in which six edge-sharing Nb-octahedra form the Lindqvist ion. These are linked via Mn-octahedra forming rods along [100] and Ca is located between the rods, creating a three dimensional structure via hydrogen bonds.
The growth regulator herbicides 2,4-D and dicamba are used to control glyphosate-resistant horseweed before crops are planted. With the impending release of 2,4-D–resistant and dicamba-resistant crops, use of these growth regulator herbicides postemergence will likely increase. The objective of this study was to determine the effectiveness of various growth regulators on Indiana horseweed populations. A greenhouse dose–response study was conducted to evaluate the effectiveness of 2,4-D ester, diglycolamine salt of dicamba, and dimethylamine salt of dicamba on control of four populations of horseweed in the greenhouse. Population 66 expressed twofold levels of tolerance to 2,4-D ester and diglycolamine salt of dicamba. Population 43 expressed an enhanced level of tolerance to diglycolamine salt of dicamba but not to the other herbicides. Diglycolamine salt of dicamba provided the best overall control of populations 3 and 34. Additionally, a field study was conducted to evaluate standard use rates of 2,4-D amine, 2,4-D ester, diglycolamine salt of dicamba, and dimethylamine salt of dicamba on control of various sized glyphosate-resistant horseweed plants. Control of plants 30 cm or less in height was 90% or greater for all four herbicides. On plants greater than 30 cm tall, diglycolamine salt of dicamba provided 97% control while 2,4-D amine provided 81% control. Diglycolamine salt of dicamba provided the highest level of control of glyphosate-resistant horseweed, followed by dimethylamine salt of dicamba, 2,4-D ester and 2,4-D amine, respectively. This research demonstrates that horseweed populations respond differently to the various salts of 2,4-D and dicamba, and it will be important to determine the appropriate use rates of each salt to control glyphosate-resistant horseweed.
Horseweed can be a problematic weed in no-till soybean fields and populations can vary in their response to 2,4-D. The objective of this study was to evaluate the growth and seed production of four horseweed populations after exposure to 2,4-D. 2,4-D amine was applied at 0, 140, 280, and 560 g ae ha−1 to 5- to 10-cm-tall horseweed plants. An additional treatment of 280 g ha−1 of 2,4-D + 840 g ae ha−1 of glyphosate was included in the study. At 2 wk after treatment (WAT), injury ranged from 47 to 98%, but by 6 WAT the injury ranged from 89 to 100% for all four populations. Between 6 and 12 WAT some individual horseweed plants started to recover. No differences in dry weights were observed between the four populations in the untreated checks at 0, 2, 6, and 12 WAT. At 280 g ha−1 of 2,4-D amine, seed production was reduced by greater than 95%. However, three of the four horseweed populations had plants that survived and produced seed after exposure to 840 g ha−1 of glyphosate + 280 g ha−1 of 2,4-D. One plant produced seed after exposure to 560 g ha−1 of 2,4-D. These results suggest that horseweed can evolve resistance to 2,4-D and no fitness penalities were observed in populations that had higher levels of tolerance to 2,4-D.
Many advances in disciplines such as chemistry, biochemistry, plant breeding, genetics, engineering, and others have been applied in a positive manner to improve knowledge in weed science. The emerging field of genomics is likely to have a similar positive effect on our understanding of weeds and their management in various plant agriculture systems. Genomics involves the large-scale use of molecular techniques for identification and functional analysis of complete or nearly complete genomic complements of genes. Commercial application of genomics has already occurred for improvement in certain crop input and output traits, including improved quality characteristics and herbicide and insect resistance. Additional commercial applications of genomics in weed science will be identification of genes involved in a crops' competitive ability. Genes controlling early crop shoot emergence, rapid early-season leaf and root development for fast canopy closure, production of allelochemicals for natural weed control, identification of novel herbicide target sites, resistance mechanisms, and genes for safening crops against specific herbicides can and will be identified. Successful crop improvement in these areas using the tools of genomics will dramatically affect weed–crop interactions and improve crop yields while reducing weed problems. In relation to improved basic knowledge of weeds and the resulting ability to improve our weed management techniques, genomics will offer the weed science community many new and exciting research opportunities. Scientists will be able to determine the genetic composition of weed populations and how it changes over time in relation to agricultural practices. Identification of genes contributing to weediness, perennial growth habit, herbicide resistance, seed and vegetative structure dormancy, plant architecture and morphology, plant reproductive characters (outcrossing and hybridization, introgression), and allelopathy will be identified and utilized with high-throughput DNA sequencing and other genomics-based technologies. Using genomics to improve our understanding of weed biology by determining which genes function to affect the fitness, competitiveness, and adaptation of weeds in agricultural environments will allow the development of improved management strategies. This review provides a summary of the various plant genomic research methods being used. Information is provided concerning the current state of molecular research in various areas of weed science and specific genomic research currently being conducted at Purdue University using transfer DNA (T-DNA) activation tagging to generate large populations of mutated plants that can be screened for genes of importance to weed science.
In 2010, a grower survey was administered to 1,299 growers in 22 states to determine changes in weed management in the United States from 2006 to 2009. The majority of growers had not changed weed management practices in the previous 3 yr; however, 75% reported using weed management practices targeted at glyphosate-resistant (GR) weeds. Growers were asked to rate their efforts at controlling GR weeds and rate the effectiveness of various practices for controlling/preventing GR weeds regardless of whether they were personally using them. Using the herbicide labeled rate, scouting fields, and rotating crops were among the practices considered by growers as most effective in managing GR weeds. Sixty-seven percent of growers reported effective management of GR weeds. Between the 2005 and 2010 Benchmark surveys, the frequency of growers using specific actions to manage GR weeds increased markedly. Although the relative effectiveness of practices, as perceived by growers, remained the same, the effectiveness rating of tillage and the use of residual and POST herbicides increased.
Horseweed is an increasingly problematic weed in soybean because of the frequent occurrence of glyphosate-resistant (GR) biotypes. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual nonglyphosate herbicides, and preplant herbicide application timing on the population dynamics of GR horseweed and crop yield. A field study was conducted at a site with a moderate infestation of GR horseweed (approximately 1 plant m−2) with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying horseweed plant density, seedbank density, and crop yield. Crop rotation did not influence in-field horseweed or seedbank densities at any data census timing. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season long horseweed densities and protecting crop yield because horseweed in this region behaves primarily as a summer annual weed. Horseweed seedbank densities declined rapidly in the soil by an average of 76% for all systems over the first 10 mo before new seed rain. Despite rapid decline in total seedbank density, seed for GR biotypes remained in the seedbank for at least 2 yr. Therefore, to reduce the presence of GR horseweed biotypes in a local no-till weed flora, integrated weed management (IWM) systems should be developed to reduce total horseweed populations based on the knowledge that seed for GR biotypes are as persistent in the seed bank as glyphosate-sensitive (GS) biotypes.
Greenhouse studies were conducted to determine the prevalence of resistance to acetolactate synthase (ALS)-inhibiting herbicides in 266 Indiana horseweed populations, both glyphosate-susceptible and glyphosate-resistant, and to characterize the response of selected biotypes to combinations of glyphosate and cloransulam. Populations with individuals resistant to ALS inhibitors were more frequent in the northern half (38% of the populations in the NW and 50% of the populations in the NE) of Indiana than in the southern half (26% of the populations in the SW and 5% of the populations in the SE). Only 2% of the populations appeared to be resistant to both glyphosate and ALS inhibitors in an initial greenhouse study. Horseweed populations with resistance to ALS inhibitors exhibited herbicide doses required for 50% reduction in plant growth (GR50) values ranging from 14 to 255 g ai ha−1 of cloransulam. The resistant : susceptible (R : S) ratio for four horseweed populations with suspected resistance to glyphosate and ALS inhibitors ranged from 0.3 to 50 and from 2.5 to 8.1 for cloransulam and glyphosate, respectively. The tank mixtures exhibited an antagonistic response to 3 of the 16 combinations of cloransulam and glyphosate on the susceptible population. The tank mixtures exhibited primarily an additive response to those same combinations in the multiple-resistant populations, but the response was occasionally synergistic for two of the four populations. The additive response between glyphosate and cloransulam indicates that, where the level of resistance is fairly low, combinations of these herbicides should be more effective for control of multiple-resistant populations compared with application of a single herbicide.
A segment of the debate surrounding the commercialization and use of glyphosate-resistant (GR) crops focuses on the theory that the implementation of these traits is an extension of the intensification of agriculture that will further erode the biodiversity of agricultural landscapes. A large field-scale study was initiated in 2006 in the United States on 156 different field sites with a minimum 3-yr history of GR-corn, -cotton or -soybean in the cropping system. The impact of cropping system, crop rotation, frequency of using the GR crop trait, and several categorical variables on seedbank weed population density and diversity was analyzed. The parameters of total weed population density of all species in the seedbank, species richness, Shannon's H′ and evenness were not affected by any management treatment. The similarity between the seedbank and aboveground weed community was more strongly related to location than management; previous year's crops and cropping systems were also important while GR trait rotation was not. The composition of the weed flora was more strongly related to location (geography) than any other parameter. The diversity of weed flora in agricultural sites with a history of GR crop production can be influenced by several factors relating to the specific method in which the GR trait is integrated (cropping system, crop rotation, GR trait rotation), the specific weed species, and the geographical location. Continuous GR crop, compared to fields with other cropping systems, only had greater species diversity (species richness) of some life forms, i.e., biennials, winter annuals, and prostrate weeds. Overall diversity was related to geography and not cropping system. These results justify further research to clarify the complexities of crops grown with herbicide-resistance traits to provide a more complete characterization of their culture and local adaptation to the weed seedbank.
Horseweed is an increasingly common and problematic weed in no-till soybean production in the eastern cornbelt due to the frequent occurrence of biotypes resistant to glyphosate. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual non-glyphosate herbicides, and preplant application timing on the population dynamics of glyphosate-resistant (GR) horseweed and crop yield. A field study was conducted from 2003 to 2007 in a no-till field located at a site that contained a moderate infestation of GR horseweed (approximately 1 plant m−2). The experiment was a split-plot design with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying in-field horseweed plant density, seedbank density, and crop yield. Horseweed densities were collected at the time of postemergence applications, 1 mo after postemergence (MAP) applications, and at the time of crop harvest or 4 MAP. Viable seedbank densities were also evaluated from soil samples collected in the fall following seed rain. Soybean–corn crop rotation reduced in-field and seedbank horseweed densities vs. continuous soybean in the third and fourth yr of this experiment. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season-long in-field horseweed densities and protecting crop yields since the growth habit of horseweed in this region is primarily as a summer annual. Management systems also influenced the GR and glyphosate-susceptible (GS) biotype population structure after 4 yr of management. The most dramatic shift was from the initial GR : GS ratio of 3 : 1 to a ratio of 1 : 6 after 4 yr of residual preplant herbicide use followed by non-glyphosate postemergence herbicides.
Almost 1,650 corn, cotton, and soybean growers in 22 states participated in a 2010 telephone survey to determine their attitudes with regard to which weed species were most problematic in glyphosate-resistant (GR) crop production systems for corn, cotton, and soybean. The survey is a follow-up to a previous 2005 to 2006 survey that utilized a smaller set of growers from fewer states. In general, growers continued to estimate weed populations as low and few challenges have been created following adoption of GR cropping systems. Pigweed and foxtail species were dominant overall, whereas other species were more commodity and state specific. Corn, cotton, and soybean growers cited velvetleaf, annual morningglory, and waterhemp, respectively, as predominant weeds. Growers in the South region were more likely to report pigweed and waterhemp (Amaranthus spp.), whereas growers in the East and West reported horseweed. When growers were asked with which GR weeds they had experienced personally, horseweed was reported in all regions, but growers in the South more frequently reported pigweed, whereas growers in the East and West regions more frequently reported waterhemp. Comparisons with the previous 2005 survey indicated that more growers believed they were experiencing GR weeds and were more aware of specific examples in their state. In particular, the Amaranthus complex was of greatest concern in continuously cropped soybean and cotton.
A 2010 survey of 1,299 corn, cotton, and soybean growers was conducted to determine their attitudes and awareness regarding glyphosate-resistant (GR) weeds and resultant implications on weed management practices. An additional 350 growers included in the current study participated in a 2005 survey, and these answers were compared across time so that cross-sectional and longitudinal comparisons of responses could be made. Most growers surveyed in 2010 were aware of the potential for weeds to evolve resistance to glyphosate; however, many growers were not aware of glyphosate resistance in specific weeds in their county or state. Growers in the South were different from growers in other geographic regions and were significantly more aware of local cases of GR weeds. Awareness of GR weeds did not increase appreciably from 2005 to 2010, but the percentage who reported GR weeds as problematic was significantly higher. Grower reports of GR weeds on-farm in 2010 were up considerably from 2005, with growers in the South reporting significantly more instances than growers in other regions. Growers in the South were also more likely to consider glyphosate resistance a serious problem. Overall, 30% of growers did not consider GR weeds to be a problem. It appears that most growers received information about glyphosate resistance from farm publications, although in the South this percentage was less than for other geographic regions. Growers in the South received more information from universities and extension sources.
Late-season field surveys conducted in Indiana from 2003 to 2005 showed that common lambsquarters and giant ragweed plants were present in 11 and 22%, respectively, of randomly sampled soybean fields that also contained glyphosate-resistant horseweed. In the fall of 2005 and 2006, seed from 13 common lambsquarters and 22 giant ragweed populations were collected from previously surveyed fields that had confirmed glyphosate-sensitive or -resistant horseweed. The objective of this study was to determine whether the presence of glyphosate-resistant horseweed was correlated with the presence of common lambsquarters and giant ragweed biotypes with elevated tolerance to glyphosate. Through a series of greenhouse screens, 57% of common lambsquarters and 31% of giant ragweed populations collected from fields that had glyphosate-resistant horseweed expressed elevated levels of glyphosate tolerance. However, elevated tolerance to glyphosate was expressed by 33% of giant ragweed and 100% of common lambsquarters populations collected in fields that had glyphosate-sensitive horseweed. Therefore, under the parameters of this experiment and through different types of analyses, we concluded there was not a strong correlation between the late-season presence of glyphosate-resistant horseweed and common lambsquarters and giant ragweed populations with elevated glyphosate tolerance in the same field. A number of the weed populations expressed significant stunting from exposure to glyphosate, but were able to resume growth. Thus, researchers should evaluate plant regrowth in addition to biomass suppression when making assessments of glyphosate resistance in weed populations through greenhouse and field screening.