We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Australian children fall short of national dietary guidelines with only 63% consuming adequate fruit and 10% enough vegetables. Before school care operates as part of Out of School Hours Care (OSHC) services and provides opportunities to address poor dietary habits in children. The aim of this study was to describe the food and beverages provided in before school care and to explore how service-level factors influence food provision.
Design:
A cross-sectional study was conducted in OSHC services. Services had their before school care visited twice between March and June 2021. Direct observation was used to capture food and beverage provision, and child and staff behaviour during breakfast. Interviews with staff collected information on service characteristics. Foods were categorised using the Australian Dietary Guidelines, and frequencies calculated. Fishers Exact Test was used to compare food provision with service characteristics.
Setting:
The before school care of OSHC services in New South Wales, Australia.
Participants:
25 OSHC services.
Results:
Fruit was provided on 22% (n=11) of days and vegetables on 12% (n=6). Services with nutrition policies containing specific language on food provision (i.e. measurable) were more likely to provide fruit compared to those with policies using non-specific language (p = 0.027). Services that reported receiving training in healthy eating provided more vegetables than those who had not received training (p = 0.037).
Conclusions:
Before school care can be supported to improve food provision through staff professional development and advocating regulatory bodies for increased specificity requirements in the nutrition policies of service providers.
Diagnosis in psychiatry faces familiar challenges. Validity and utility remain elusive, and confusion regarding the fluid and arbitrary border between mental health and illness is increasing. The mainstream strategy has been conservative and iterative, retaining current nosology until something better emerges. However, this has led to stagnation. New conceptual frameworks are urgently required to catalyze a genuine paradigm shift.
Methods
We outline candidate strategies that could pave the way for such a paradigm shift. These include the Research Domain Criteria (RDoC), the Hierarchical Taxonomy of Psychopathology (HiTOP), and Clinical Staging, which all promote a blend of dimensional and categorical approaches.
Results
These alternative still heuristic transdiagnostic models provide varying levels of clinical and research utility. RDoC was intended to provide a framework to reorient research beyond the constraints of DSM. HiTOP began as a nosology derived from statistical methods and is now pursuing clinical utility. Clinical Staging aims to both expand the scope and refine the utility of diagnosis by the inclusion of the dimension of timing. None is yet fit for purpose. Yet they are relatively complementary, and it may be possible for them to operate as an ecosystem. Time will tell whether they have the capacity singly or jointly to deliver a paradigm shift.
Conclusions
Several heuristic models have been developed that separately or synergistically build infrastructure to enable new transdiagnostic research to define the structure, development, and mechanisms of mental disorders, to guide treatment and better meet the needs of patients, policymakers, and society.
The clinical high-risk state for psychosis (CHR) is associated with alterations in grey matter volume (GMV) in various regions such as the hippocampus (Vissink et al. BP:GOS 2022; 2(2) 147-152). Within the scope of the North American Prodrome Longitudinal Study (NAPLS-2; Cannon et al. AM J Psychiatry 2016; 173(10), 980-988), a publicly available risk calculator based on clinical variables was developed to assess the likelihood of individuals to transition to psychosis within a 2-year period.
Objectives
In the current study, we aim to examine the association between GMV and NAPLS-2 risk scores calculated for individuals with CHR and recent-onset depression (ROD), taking a transdiagnostic approach on the transition to psychosis.
Methods
The sample consisted of 315 CHR (M = 23.85, SD = ± 5.64; female: 164) and 295 ROD (M = 25.11, SD = ± 6.21; female: 144) patients from the multi-site Personalised Prognostic Tools for Early Psychosis Management (PRONIA) Study (Koutsouleris et al. JAMA Psychiatry 2018; 57(11), 1156-1172). Risk scores were calculated using the six clinical and neurocognitive variables included in the NAPLS-2 risk calculator that were significant for predicting psychosis. Further, we derived smoothed GMV maps from T1-weighted structural magnetic resonance imaging using a full width at half maximum kernel size of 8 mm. We employed a multiple regression design in SPM12 to examine associations between risk scores and GMV. On the whole-brain level, we calculated permutation-based threshold-free cluster enhancement (TFCE) contrasts using the TFCE toolbox. Additionally, we calculated t-contrasts within a region-of-interest (ROI) analysis encompassing the hippocampus. All results were thresholded at p < 0.05 with family wise error correction to address multiple comparisons.
Results
Our analysis revealed that linear GMV increases in the right middle and superior frontal gyrus (kE= 2726 voxels) were significantly associated with higher risk for psychosis transition within two years (see figure 1, highlighted in blue). In the ROI analysis, we found a significant negative linear association between GMV decreases in the left hippocampus (kE = 353 voxels) and higher risk for psychosis transition (see figure 1, highlighted in red).
Image:
Conclusions
GMV reductions in the hippocampus have frequently been observed in CHR and psychosis patients (Vissink et al. BP:GOS 2022; 2(2) 147-152), therefore our results further highlight the crucial role of this region in the progression of the disease. There is limited evidence on GMV increases in CHR patients. However, the GMV increase we found in the frontal pole may reflect compensatory mechanisms of the brain in the development of psychosis. In addition, we were able to provide biological validation of the NAPLS-2 risk calculator and its assessment of risk for transition to psychosis.
Providing access to food in schools can serve as a platform for food system transformation, while simultaneously improving educational outcomes and livelihoods. Locally grown and procured food is a nutritious, healthy, and efficient way to provide schoolchildren with a daily meal while, at the same time, improving opportunities for smallholder farmers(1). While there is significant potential for school food provision activities to support healthy dietary behaviours in the Pacific Islands region, there is limited evidence of these types of activities(2), including scope and links to local food production in the region. Therefore, the aim of this scoping study was to understand the current state of school food activities (school feeding, gardening and other food provision activities) and any current, and potential links to local agriculture in the Pacific Islands. A regional mapping activity was undertaken, initially covering 22 Pacific Island countries. The mapping included two steps: 1) a desk based scoping review including peer-reviewed and grey literature (2007-2022) and 2) One-hour semi-structured online Zoom interviews with key country stakeholders. Twelve sources were identified, predominately grey literature (n = 9). Thirty interviews were completed with at least 1 key stakeholder from 15 countries. A variety of school food provision activities were identified, including school feeding programs (n = 16, of varying scale), programs covering both school feeding and school gardens (n = 2), school garden programs (n = 12), and other school food provision activities (n = 4, including taste/sensory education, food waste reduction, increasing canteen capacity for local foods, supply chain distribution between local agriculture and schools). Existing links to local agriculture varied for the different programs. Of the 16 school feeding programs, 8 had a requirement for the use of local produce (policy requirement n = 6, traditional requirement from leaders n = 2). Of the 12 school garden programs, 6 used local or traditional produce in the garden and 5 involved local farmers in varying capacities. Challenges to linking local agriculture into school food provision programs were reported for 17 activities and were context dependent. Common challenges included limited funding, inflation, Covid-19, inadequate produce supply for the scale of program, limited farmer capacity, limited institutional support for local produce, low produce storage life, climatic conditions and disasters, water security, delayed procurement process, and limited professional development and upskilling opportunities. Modernisation and colonisation of food systems resulting in a preference for hyperpalatable foods and challenges in incorporating local produce in a way that is accepted by students was also identified as a challenge. This evidence can be used to develop a pathway to piloting and implementing models of school food provision programs and promoting opportunities for shared learning and collaboration with key stakeholders across the Pacific Islands region.
Cognitive training is a non-pharmacological intervention aimed at improving cognitive function across a single or multiple domains. Although the underlying mechanisms of cognitive training and transfer effects are not well-characterized, cognitive training has been thought to facilitate neural plasticity to enhance cognitive performance. Indeed, the Scaffolding Theory of Aging and Cognition (STAC) proposes that cognitive training may enhance the ability to engage in compensatory scaffolding to meet task demands and maintain cognitive performance. We therefore evaluated the effects of cognitive training on working memory performance in older adults without dementia. This study will help begin to elucidate non-pharmacological intervention effects on compensatory scaffolding in older adults.
Participants and Methods:
48 participants were recruited for a Phase III randomized clinical trial (Augmenting Cognitive Training in Older Adults [ACT]; NIH R01AG054077) conducted at the University of Florida and University of Arizona. Participants across sites were randomly assigned to complete cognitive training (n=25) or an education training control condition (n=23). Cognitive training and the education training control condition were each completed during 60 sessions over 12 weeks for 40 hours total. The education training control condition involved viewing educational videos produced by the National Geographic Channel. Cognitive training was completed using the Posit Science Brain HQ training program, which included 8 cognitive training paradigms targeting attention/processing speed and working memory. All participants also completed demographic questionnaires, cognitive testing, and an fMRI 2-back task at baseline and at 12-weeks following cognitive training.
Results:
Repeated measures analysis of covariance (ANCOVA), adjusted for training adherence, transcranial direct current stimulation (tDCS) condition, age, sex, years of education, and Wechsler Test of Adult Reading (WTAR) raw score, revealed a significant 2-back by training group interaction (F[1,40]=6.201, p=.017, η2=.134). Examination of simple main effects revealed baseline differences in 2-back performance (F[1,40]=.568, p=.455, η2=.014). After controlling for baseline performance, training group differences in 2-back performance was no longer statistically significant (F[1,40]=1.382, p=.247, η2=.034).
Conclusions:
After adjusting for baseline performance differences, there were no significant training group differences in 2-back performance, suggesting that the randomization was not sufficient to ensure adequate distribution of participants across groups. Results may indicate that cognitive training alone is not sufficient for significant improvement in working memory performance on a near transfer task. Additional improvement may occur with the next phase of this clinical trial, such that tDCS augments the effects of cognitive training and results in enhanced compensatory scaffolding even within this high performing cohort. Limitations of the study include a highly educated sample with higher literacy levels and the small sample size was not powered for transfer effects analysis. Future analyses will include evaluation of the combined intervention effects of a cognitive training and tDCS on nback performance in a larger sample of older adults without dementia.
Cohort studies demonstrate that people who later develop schizophrenia, on average, present with mild cognitive deficits in childhood and endure a decline in adolescence and adulthood. Yet, tremendous heterogeneity exists during the course of psychotic disorders, including the prodromal period. Individuals identified to be in this period (known as CHR-P) are at heightened risk for developing psychosis (~35%) and begin to exhibit cognitive deficits. Cognitive impairments in CHR-P (as a singular group) appear to be relatively stable or ameliorate over time. A sizeable proportion has been described to decline on measures related to processing speed or verbal learning. The purpose of this analysis is to use data-driven approaches to identify latent subgroups among CHR-P based on cognitive trajectories. This will yield a clearer understanding of the timing and presentation of both general and domain-specific deficits.
Participants and Methods:
Participants included 684 young people at CHR-P (ages 12–35) from the second cohort of the North American Prodromal Longitudinal Study. Performance on the MATRICS Consensus Cognitive Battery (MCCB) and the Wechsler Abbreviated Scale of Intelligence (WASI-I) was assessed at baseline, 12-, and 24-months. Tested MCCB domains include verbal learning, speed of processing, working memory, and reasoning & problem-solving. Sex- and age-based norms were utilized. The Oral Reading subtest on the Wide Range Achievement Test (WRAT4) indexed pre-morbid IQ at baseline. Latent class mixture models were used to identify distinct trajectories of cognitive performance across two years. One- to 5-class solutions were compared to decide the best solution. This determination depended on goodness-of-fit metrics, interpretability of latent trajectories, and proportion of subgroup membership (>5%).
Results:
A one-class solution was found for WASI-I Full-Scale IQ, as people at CHR-P predominantly demonstrated an average IQ that increased gradually over time. For individual domains, one-class solutions also best fit the trajectories for speed of processing, verbal learning, and working memory domains. Two distinct subgroups were identified on one of the executive functioning domains, reasoning and problem-solving (NAB Mazes). The sample divided into unimpaired performance with mild improvement over time (Class I, 74%) and persistent performance two standard deviations below average (Class II, 26%). Between these classes, no significant differences were found for biological sex, age, years of education, or likelihood of conversion to psychosis (OR = 1.68, 95% CI 0.86 to 3.14). Individuals assigned to Class II did demonstrate a lower WASI-I IQ at baseline (96.3 vs. 106.3) and a lower premorbid IQ (100.8 vs. 106.2).
Conclusions:
Youth at CHR-P demonstrate relatively homogeneous trajectories across time in terms of general cognition and most individual domains. In contrast, two distinct subgroups were observed with higher cognitive skills involving planning and foresight, and they notably exist independent of conversion outcome. Overall, these findings replicate and extend results from a recently published latent class analysis that examined 12-month trajectories among CHR-P using a different cognitive battery (Allott et al., 2022). Findings inform which individuals at CHR-P may be most likely to benefit from cognitive remediation and can inform about the substrates of deficits by establishing meaningful subtypes.
White matter hyperintensity (WMH) burden is greater, has a frontal-temporal distribution, and is associated with proxies of exposure to repetitive head impacts (RHI) in former American football players. These findings suggest that in the context of RHI, WMH might have unique etiologies that extend beyond those of vascular risk factors and normal aging processes. The objective of this study was to evaluate the correlates of WMH in former elite American football players. We examined markers of amyloid, tau, neurodegeneration, inflammation, axonal injury, and vascular health and their relationships to WMH. A group of age-matched asymptomatic men without a history of RHI was included to determine the specificity of the relationships observed in the former football players.
Participants and Methods:
240 male participants aged 45-74 (60 unexposed asymptomatic men, 60 male former college football players, 120 male former professional football players) underwent semi-structured clinical interviews, magnetic resonance imaging (structural T1, T2 FLAIR, and diffusion tensor imaging), and lumbar puncture to collect cerebrospinal fluid (CSF) biomarkers as part of the DIAGNOSE CTE Research Project. Total WMH lesion volumes (TLV) were estimated using the Lesion Prediction Algorithm from the Lesion Segmentation Toolbox. Structural equation modeling, using Full-Information Maximum Likelihood (FIML) to account for missing values, examined the associations between log-TLV and the following variables: total cortical thickness, whole-brain average fractional anisotropy (FA), CSF amyloid ß42, CSF p-tau181, CSF sTREM2 (a marker of microglial activation), CSF neurofilament light (NfL), and the modified Framingham stroke risk profile (rFSRP). Covariates included age, race, education, APOE z4 carrier status, and evaluation site. Bootstrapped 95% confidence intervals assessed statistical significance. Models were performed separately for football players (college and professional players pooled; n=180) and the unexposed men (n=60). Due to differences in sample size, estimates were compared and were considered different if the percent change in the estimates exceeded 10%.
Results:
In the former football players (mean age=57.2, 34% Black, 29% APOE e4 carrier), reduced cortical thickness (B=-0.25, 95% CI [0.45, -0.08]), lower average FA (B=-0.27, 95% CI [-0.41, -.12]), higher p-tau181 (B=0.17, 95% CI [0.02, 0.43]), and higher rFSRP score (B=0.27, 95% CI [0.08, 0.42]) were associated with greater log-TLV. Compared to the unexposed men, substantial differences in estimates were observed for rFSRP (Bcontrol=0.02, Bfootball=0.27, 994% difference), average FA (Bcontrol=-0.03, Bfootball=-0.27, 802% difference), and p-tau181 (Bcontrol=-0.31, Bfootball=0.17, -155% difference). In the former football players, rFSRP showed a stronger positive association and average FA showed a stronger negative association with WMH compared to unexposed men. The effect of WMH on cortical thickness was similar between the two groups (Bcontrol=-0.27, Bfootball=-0.25, 7% difference).
Conclusions:
These results suggest that the risk factor and biological correlates of WMH differ between former American football players and asymptomatic individuals unexposed to RHI. In addition to vascular risk factors, white matter integrity on DTI showed a stronger relationship with WMH burden in the former football players. FLAIR WMH serves as a promising measure to further investigate the late multifactorial pathologies of RHI.
Cognitive training has shown promise for improving cognition in older adults. Aging involves a variety of neuroanatomical changes that may affect response to cognitive training. White matter hyperintensities (WMH) are one common age-related brain change, as evidenced by T2-weighted and Fluid Attenuated Inversion Recovery (FLAIR) MRI. WMH are associated with older age, suggestive of cerebral small vessel disease, and reflect decreased white matter integrity. Higher WMH load associates with reduced threshold for clinical expression of cognitive impairment and dementia. The effects of WMH on response to cognitive training interventions are relatively unknown. The current study assessed (a) proximal cognitive training performance following a 3-month randomized control trial and (b) the contribution of baseline whole-brain WMH load, defined as total lesion volume (TLV), on pre-post proximal training change.
Participants and Methods:
Sixty-two healthy older adults ages 65-84 completed either adaptive cognitive training (CT; n=31) or educational training control (ET; n=31) interventions. Participants assigned to CT completed 20 hours of attention/processing speed training and 20 hours of working memory training delivered through commercially-available Posit Science BrainHQ. ET participants completed 40 hours of educational videos. All participants also underwent sham or active transcranial direct current stimulation (tDCS) as an adjunctive intervention, although not a variable of interest in the current study. Multimodal MRI scans were acquired during the baseline visit. T1- and T2-weighted FLAIR images were processed using the Lesion Segmentation Tool (LST) for SPM12. The Lesion Prediction Algorithm of LST automatically segmented brain tissue and calculated lesion maps. A lesion threshold of 0.30 was applied to calculate TLV. A log transformation was applied to TLV to normalize the distribution of WMH. Repeated-measures analysis of covariance (RM-ANCOVA) assessed pre/post change in proximal composite (Total Training Composite) and sub-composite (Processing Speed Training Composite, Working Memory Training Composite) measures in the CT group compared to their ET counterparts, controlling for age, sex, years of education and tDCS group. Linear regression assessed the effect of TLV on post-intervention proximal composite and sub-composite, controlling for baseline performance, intervention assignment, age, sex, years of education, multisite scanner differences, estimated total intracranial volume, and binarized cardiovascular disease risk.
Results:
RM-ANCOVA revealed two-way group*time interactions such that those assigned cognitive training demonstrated greater improvement on proximal composite (Total Training Composite) and sub-composite (Processing Speed Training Composite, Working Memory Training Composite) measures compared to their ET counterparts. Multiple linear regression showed higher baseline TLV associated with lower pre-post change on Processing Speed Training sub-composite (ß = -0.19, p = 0.04) but not other composite measures.
Conclusions:
These findings demonstrate the utility of cognitive training for improving postintervention proximal performance in older adults. Additionally, pre-post proximal processing speed training change appear to be particularly sensitive to white matter hyperintensity load versus working memory training change. These data suggest that TLV may serve as an important factor for consideration when planning processing speed-based cognitive training interventions for remediation of cognitive decline in older adults.
Interventions using a cognitive training paradigm called the Useful Field of View (UFOV) task have shown to be efficacious in slowing cognitive decline. However, no studies have looked at the engagement of functional networks during UFOV task completion. The current study aimed to (a) assess if regions activated during the UFOV fMRI task were functionally connected and related to task performance (henceforth called the UFOV network), (b) compare connectivity of the UFOV network to 7 resting-state functional connectivity networks in predicting proximal (UFOV) and near-transfer (Double Decision) performance, and (c) explore the impact of network segregation between higher-order networks and UFOV performance.
Participants and Methods:
336 healthy older adults (mean age=71.6) completed the UFOV fMRI task in a Siemens 3T scanner. UFOV fMRI accuracy was calculated as the number of correct responses divided by 56 total trials. Double Decision performance was calculated as the average presentation time of correct responses in log ms, with lower scores equating to better processing speed. Structural and functional MRI images were processed using the default pre-processing pipeline within the CONN toolbox. The Artifact Rejection Toolbox was set at a motion threshold of 0.9mm and participants were excluded if more than 50% of volumes were flagged as outliers. To assess connectivity of regions associated with the UFOV task, we created 10 spherical regions of interest (ROIs) a priori using the WFU PickAtlas in SPM12. These include the bilateral pars triangularis, supplementary motor area, and inferior temporal gyri, as well as the left pars opercularis, left middle occipital gyrus, right precentral gyrus and right superior parietal lobule. We used a weighted ROI-to-ROI connectivity analysis to model task-based within-network functional connectivity of the UFOV network, and its relationship to UFOV accuracy. We then used weighted ROI-to-ROI connectivity analysis to compare the efficacy of the UFOV network versus 7 resting-state networks in predicting UFOV fMRI task performance and Double Decision performance. Finally, we calculated network segregation among higher order resting state networks to assess its relationship with UFOV accuracy. All functional connectivity analyses were corrected at a false discovery threshold (FDR) at p<0.05.
Results:
ROI-to-ROI analysis showed significant within-network functional connectivity among the 10 a priori ROIs (UFOV network) during task completion (all pFDR<.05). After controlling for covariates, greater within-network connectivity of the UFOV network associated with better UFOV fMRI performance (pFDR=.008). Regarding the 7 resting-state networks, greater within-network connectivity of the CON (pFDR<.001) and FPCN (pFDR=. 014) were associated with higher accuracy on the UFOV fMRI task. Furthermore, greater within-network connectivity of only the UFOV network associated with performance on the Double Decision task (pFDR=.034). Finally, we assessed the relationship between higher-order network segregation and UFOV accuracy. After controlling for covariates, no significant relationships between network segregation and UFOV performance remained (all p-uncorrected>0.05).
Conclusions:
To date, this is the first study to assess task-based functional connectivity during completion of the UFOV task. We observed that coherence within 10 a priori ROIs significantly predicted UFOV performance. Additionally, enhanced within-network connectivity of the UFOV network predicted better performance on the Double Decision task, while conventional resting-state networks did not. These findings provide potential targets to optimize efficacy of UFOV interventions.
Aging is associated with disruptions in functional connectivity within the default mode (DMN), frontoparietal control (FPCN), and cingulo-opercular (CON) resting-state networks. Greater within-network connectivity predicts better cognitive performance in older adults. Therefore, strengthening network connectivity, through targeted intervention strategies, may help prevent age-related cognitive decline or progression to dementia. Small studies have demonstrated synergistic effects of combining transcranial direct current stimulation (tDCS) and cognitive training (CT) on strengthening network connectivity; however, this association has yet to be rigorously tested on a large scale. The current study leverages longitudinal data from the first-ever Phase III clinical trial for tDCS to examine the efficacy of an adjunctive tDCS and CT intervention on modulating network connectivity in older adults.
Participants and Methods:
This sample included 209 older adults (mean age = 71.6) from the Augmenting Cognitive Training in Older Adults multisite trial. Participants completed 40 hours of CT over 12 weeks, which included 8 attention, processing speed, and working memory tasks. Participants were randomized into active or sham stimulation groups, and tDCS was administered during CT daily for two weeks then weekly for 10 weeks. For both stimulation groups, two electrodes in saline-soaked 5x7 cm2 sponges were placed at F3 (cathode) and F4 (anode) using the 10-20 measurement system. The active group received 2mA of current for 20 minutes. The sham group received 2mA for 30 seconds, then no current for the remaining 20 minutes.
Participants underwent resting-state fMRI at baseline and post-intervention. CONN toolbox was used to preprocess imaging data and conduct region of interest (ROI-ROI) connectivity analyses. The Artifact Detection Toolbox, using intermediate settings, identified outlier volumes. Two participants were excluded for having greater than 50% of volumes flagged as outliers. ROI-ROI analyses modeled the interaction between tDCS group (active versus sham) and occasion (baseline connectivity versus postintervention connectivity) for the DMN, FPCN, and CON controlling for age, sex, education, site, and adherence.
Results:
Compared to sham, the active group demonstrated ROI-ROI increases in functional connectivity within the DMN following intervention (left temporal to right temporal [T(202) = 2.78, pFDR < 0.05] and left temporal to right dorsal medial prefrontal cortex [T(202) = 2.74, pFDR < 0.05]. In contrast, compared to sham, the active group demonstrated ROI-ROI decreases in functional connectivity within the FPCN following intervention (left dorsal prefrontal cortex to left temporal [T(202) = -2.96, pFDR < 0.05] and left dorsal prefrontal cortex to left lateral prefrontal cortex [T(202) = -2.77, pFDR < 0.05]). There were no significant interactions detected for CON regions.
Conclusions:
These findings (a) demonstrate the feasibility of modulating network connectivity using tDCS and CT and (b) provide important information regarding the pattern of connectivity changes occurring at these intervention parameters in older adults. Importantly, the active stimulation group showed increases in connectivity within the DMN (a network particularly vulnerable to aging and implicated in Alzheimer’s disease) but decreases in connectivity between left frontal and temporal FPCN regions. Future analyses from this trial will evaluate the association between these changes in connectivity and cognitive performance post-intervention and at a one-year timepoint.
Subthreshold depressive symptoms are both prevalent and associated with negative outcomes in older adults, including conversion to major depressive disorder and other medical conditions. Antidepressants are not recommended as first-line or sole intervention for subthreshold depression; thus, finding other efficacious interventions is important. In depressed adults, transcranial direct current stimulation (tDCS) applied to the frontal lobe has antidepressant properties and pairing tDCS with cognitive training results in additional benefit due to enhancement of frontal cortical activity. However, these studies have primarily targeted depressed adults under age 65 years and less is known about whether this intervention combination is beneficial or affects subthreshold depressive symptoms in older adults.
Participants and Methods:
We are reporting secondary data analyses from Nissim et al. (2019), who recruited 30 non-demented healthy older adults and randomized them to receive active or sham tDCS in combination with cognitive training for 2 weeks. Active tDCS was delivered bifrontally over F3 (cathode) and F4 (anode) for 20-min at 2 mA intensity through two 5x7 cm2 saline saturated sponge electrodes using the Soterix Medical 1x1 tDCS clinical trials device. Sham tDCS had identical set-up with 2 mA stimulation for 30-sec with 30-sec ramp up and down. Cognitive training was administered for 40-min daily using attention/processing speed and working memory modules from BrainHQ. The first 20-min of cognitive training was paired with active or sham tDCS. To allow room for symptom improvement, we only included participants with Beck Depression Inventory, 2nd edition (BDI-II) scores of 5 or greater ("minimal" depression severity). We identified 15 participants who met this cut-off (70.93 ± 5.41 years old, 10 females, 16.4 years ± 2.32 years education, MoCA = 27.27 ± 2.34; 7 active, 8 sham).
Results:
tDCS conditions did not significantly differ in age, sex, years of education, MoCA scores, number of completed intervention days, or baseline BDI-II (active: 7.71 ± 2.93, sham: 11.38 ± 6.44). There were no differences in sensation ratings between groups or in confidence ratings for condition received (suggesting successful blinding). Results indicated the combination of active (and not sham) tDCS with cognitive training was associated with reduced depressive symptoms (2.7 vs. 1.4 points, active vs. sham). Including covariates (age, sex, education, MoCA scores, and number of completed intervention days) in the model further strengthened this discrepancy (3.7 vs. 0.51 points, active vs. sham).
Conclusions:
While preliminary, these results suggest this intervention combination may be a potential method for improving subthreshold depressive symptoms in older adults via targeting prefrontal neural circuitry and promoting neuroplasticity of the underlying neural network. While baseline BDI-II scores did not significantly differ, the active tDCS group had a lower score than sham, but saw greater improvement in BDI-II scores post-intervention despite having less room for change. Adequate treatment of subthreshold depressive symptoms may prevent or reduce negative outcomes associated with depressive symptoms in at-risk older adults. Larger randomized clinical trials are needed to better understand tDCS plus cognitive training antidepressant effects in this age group.
Nonpathological aging has been linked to decline in both verbal and visuospatial memory abilities in older adults. Disruptions in resting-state functional connectivity within well-characterized, higherorder cognitive brain networks have also been coupled with poorer memory functioning in healthy older adults and in older adults with dementia. However, there is a paucity of research on the association between higherorder functional connectivity and verbal and visuospatial memory performance in the older adult population. The current study examines the association between resting-state functional connectivity within the cingulo-opercular network (CON), frontoparietal control network (FPCN), and default mode network (DMN) and verbal and visuospatial learning and memory in a large sample of healthy older adults. We hypothesized that greater within-network CON and FPCN functional connectivity would be associated with better immediate verbal and visuospatial memory recall. Additionally, we predicted that within-network DMN functional connectivity would be associated with improvements in delayed verbal and visuospatial memory recall. This study helps to glean insight into whether within-network CON, FPCN, or DMN functional connectivity is associated with verbal and visuospatial memory abilities in later life.
Participants and Methods:
330 healthy older adults between 65 and 89 years old (mean age = 71.6 ± 5.2) were recruited at the University of Florida (n = 222) and the University of Arizona (n = 108). Participants underwent resting-state fMRI and completed verbal memory (Hopkins Verbal Learning Test - Revised [HVLT-R]) and visuospatial memory (Brief Visuospatial Memory Test - Revised [BVMT-R]) measures. Immediate (total) and delayed recall scores on the HVLT-R and BVMT-R were calculated using each test manual’s scoring criteria. Learning ratios on the HVLT-R and BVMT-R were quantified by dividing the number of stimuli (verbal or visuospatial) learned between the first and third trials by the number of stimuli not recalled after the first learning trial. CONN Toolbox was used to extract average within-network connectivity values for CON, FPCN, and DMN. Hierarchical regressions were conducted, controlling for sex, race, ethnicity, years of education, number of invalid scans, and scanner site.
Results:
Greater CON connectivity was significantly associated with better HVLT-R immediate (total) recall (ß = 0.16, p = 0.01), HVLT-R learning ratio (ß = 0.16, p = 0.01), BVMT-R immediate (total) recall (ß = 0.14, p = 0.02), and BVMT-R delayed recall performance (ß = 0.15, p = 0.01). Greater FPCN connectivity was associated with better BVMT-R learning ratio (ß = 0.13, p = 0.04). HVLT-R delayed recall performance was not associated with connectivity in any network, and DMN connectivity was not significantly related to any measure.
Conclusions:
Connectivity within CON demonstrated a robust relationship with different components of memory function as well across verbal and visuospatial domains. In contrast, FPCN only evidenced a relationship with visuospatial learning, and DMN was not significantly associated with memory measures. These data suggest that CON may be a valuable target in longitudinal studies of age-related memory changes, but also a possible target in future non-invasive interventions to attenuate memory decline in older adults.
After officer-involved shootings (OIS), rapid delivery of emergency medical care is critical but may be delayed due to scene safety concerns. The purpose of this study was to describe medical care rendered by law enforcement officers (LEOs) after lethal force incidents.
Methods:
Retrospective analysis of open-source video footage of OIS occurring from February 15, 2013 through December 31, 2020. Frequency and nature of care provided, time until LEO and Emergency Medical Services (EMS) care, and mortality outcomes were evaluated. The study was deemed exempt by the Mayo Clinic Institutional Review Board.
Results:
Three hundred forty-two (342) videos were included in the final analysis; LEOs rendered care in 172 (50.3%) incidents. Average elapsed time from time-of-injury (TOI) to LEO-provided care was 155.8 (SD = 198.8) seconds. Hemorrhage control was the most common intervention performed. An average of 214.2 seconds elapsed between LEO care and EMS arrival. No mortality difference was identified between LEO versus EMS care (P = .1631). Subjects with truncal wounds were more likely to die than those with extremity wounds (P < .00001).
Conclusions:
It was found that LEOs rendered medical care in one-half of all OIS incidents, initiating care on average 3.5 minutes prior to EMS arrival. Although no significant mortality difference was noted for LEO versus EMS care, this finding must be interpreted cautiously, as specific interventions, such as extremity hemorrhage control, may have impacted select patients. Future studies are needed to determine optimal LEO care for these patients.
The internet serves an increasingly critical role in how older adults manage their personal health. Electronic patient portals, for example, provide a centralized platform for older adults to access lab results, manage prescriptions and appointments, and communicate with providers. This study examined whether neurocognition mediates the effect of older age on electronic patient portal navigation.
Method:
Forty-nine younger (18–35 years) and 35 older adults (50–75 years) completed the Test of Online Health Records Navigation (TOHRN), which is an experimenter-controlled website on which participants were asked to log-in, review laboratory results, read provider messages, and schedule an appointment. Participants also completed a neuropsychological battery, self-report questionnaires, and measures of health literacy and functional capacity.
Results:
Mediation analyses revealed a significant indirect effect of older age on lower TOHRN accuracy, which was fully mediated by the total cognitive composite.
Conclusions:
Findings indicate that neurocognition may help explain some of the variance in age-related difficulties navigating electronic patient health portals. Future studies might examine the possible benefits of both structural (e.g., human factors web design enhancement) and individual (e.g., training and compensation) cognitive supports to improve the navigability of electronic patient health portals for older adults.
The purpose of this document is to highlight practical recommendations to assist acute-care hospitals in prioritization and implementation of strategies to prevent healthcare-associated infections through hand hygiene. This document updates the Strategies to Prevent Healthcare-Associated Infections in Acute Care Hospitals through Hand Hygiene, published in 2014. This expert guidance document is sponsored by the Society for Healthcare Epidemiology (SHEA). It is the product of a collaborative effort led by SHEA, the Infectious Diseases Society of America, the Association for Professionals in Infection Control and Epidemiology, the American Hospital Association, and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise.
Many of the most contentious questions that concern the ecology of helminths could be resolved with data on helminth abundance over the past few decades or centuries, but unfortunately these data are rare. A new sub-discipline – the historical ecology of parasitism – is resurrecting long-term data on the abundance of parasites, an advancement facilitated by the use of biological natural history collections. Because the world's museums hold billions of suitable specimens collected over more than a century, these potential parasitological datasets are broad in scope and finely resolved in taxonomic, temporal and spatial dimensions. Here, we set out best practices for the extraction of parasitological information from natural history collections, including how to conceive of a project, how to select specimens, how to engage curators and receive permission for proposed projects, standard operating protocols for dissections and how to manage data. Our hope is that other helminthologists will use this paper as a reference to expand their own research programmes along the dimension of time.
Area-level residential instability (ARI), an index of social fragmentation, has been shown to explain the association between urbanicity and psychosis. Urban upbringing has been shown to be associated with decreased gray matter volumes (GMV)s of brain regions corresponding to the right caudal middle frontal gyrus (CMFG) and rostral anterior cingulate cortex (rACC).
Objectives
We hypothesize that greater ARI will be associated with reduced right posterior CMFG and rACC GMVs.
Methods
Data were collected at baseline as part of the North American Prodrome Longitudinal Study. Counties where participants resided during childhood were geographically coded using the US Censuses to area-level factors. ARI was defined as the percentage of residents living in a different house five years ago. Generalized linear mixed models tested associations between ARI and GMVs.
Results
This study included 29 HC and 64 CHR-P individuals who were aged 12 to 24 years, had remained in their baseline residential area, and had magnetic resonance imaging scans. ARI was associated with reduced right CMFG (adjusted β = -0.258; 95% CI = -0.502 – -0.015) and right rACC volumes (adjusted β = -0.318; 95% CI = -0.612 – -0.023). The interaction terms (ARI X diagnostic group) in the prediction of both brain regions were not significant, indicating that the relationships between ARI and regional brain volumes held for both CHR-P and HCs.
Conclusions
Like urban upbringing, ARI may be an important social environmental characteristic that adversely impacts brain regions related to schizophrenia.
Work-related musculoskeletal disorders in ENT surgeons are common and detrimental, yet few are aware of preventative measures. We evaluate the evidence for interventions to prevent work-related musculoskeletal disorders in ENT surgeons.
Method
A systematic search of databases up to 8 June 2021 was performed using Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines and predetermined inclusion criteria.
Results
Seven prospective cohort studies and 2 case series were identified (51 participants). Interventions included novel equipment (n = 3), patient positioning (n = 2), clinician positioning (n = 3) and operative technique (n = 1). Five studies reported Rapid Upper Limb Assessment scores as outcome measures of strain. Strain decreased when adopting a favourable operating posture, using a supportive chair and keeping patients supine for clinic procedures.
Conclusion
A small number of low-quality studies were identified. Modifiable risk factors exist, and ergonomic education may help prevent work-related musculoskeletal disorders. Further studies with longer term follow up are required.
To test the functional implications of impaired white matter (WM) connectivity among patients with schizophrenia and their relatives, we examined the heritability of fractional anisotropy (FA) measured on diffusion tensor imaging data acquired in Pittsburgh and Philadelphia, and its association with cognitive performance in a unique sample of 175 multigenerational non-psychotic relatives of 23 multiplex schizophrenia families and 240 unrelated controls (total = 438).
Methods
We examined polygenic inheritance (h2r) of FA in 24 WM tracts bilaterally, and also pleiotropy to test whether heritability of FA in multiple WM tracts is secondary to genetic correlation among tracts using the Sequential Oligogenic Linkage Analysis Routines. Partial correlation tests examined the correlation of FA with performance on eight cognitive domains on the Penn Computerized Neurocognitive Battery, controlling for age, sex, site and mother's education, followed by multiple comparison corrections.
Results
Significant total additive genetic heritability of FA was observed in all three-categories of WM tracts (association, commissural and projection fibers), in total 33/48 tracts. There were significant genetic correlations in 40% of tracts. Diagnostic group main effects were observed only in tracts with significantly heritable FA. Correlation of FA with neurocognitive impairments was observed mainly in heritable tracts.
Conclusions:
Our data show significant heritability of all three-types of tracts among relatives of schizophrenia. Significant heritability of FA of multiple tracts was not entirely due to genetic correlations among the tracts. Diagnostic group main effect and correlation with neurocognitive performance were mainly restricted to tracts with heritable FA suggesting shared genetic effects on these traits.