We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range 0.4 < z < 1.0, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg2 of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg2 of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at 0.4 < z < 1. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth τ > 1, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5-20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg2 ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
The stars of the Milky Way carry the chemical history of our Galaxy in their atmospheres as they journey through its vast expanse. Like barcodes, we can extract the chemical fingerprints of stars from high-resolution spectroscopy. The fourth data release (DR4) of the Galactic Archaeology with HERMES (GALAH) Survey, based on a decade of observations, provides the chemical abundances of up to 32 elements for 917 588 stars that also have exquisite astrometric data from the Gaia satellite. For the first time, these elements include life-essential nitrogen to complement carbon, and oxygen as well as more measurements of rare-earth elements critical to modern-life electronics, offering unparalleled insights into the chemical composition of the Milky Way. For this release, we use neural networks to simultaneously fit stellar parameters and abundances across the whole wavelength range, leveraging synthetic grids computed with Spectroscopy Made Easy. These grids account for atomic line formation in non-local thermodynamic equilibrium for 14 elements. In a two-iteration process, we first fit stellar labels to all 1 085 520 spectra, then co-add repeated observations and refine these labels using astrometric data from Gaia and 2MASS photometry, improving the accuracy and precision of stellar parameters and abundances. Our validation thoroughly assesses the reliability of spectroscopic measurements and highlights key caveats. GALAH DR4 represents yet another milestone in Galactic archaeology, combining detailed chemical compositions from multiple nucleosynthetic channels with kinematic information and age estimates. The resulting dataset, covering nearly a million stars, opens new avenues for understanding not only the chemical and dynamical history of the Milky Way but also the broader questions of the origin of elements and the evolution of planets, stars, and galaxies.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
Diagnostic criteria for major depressive disorder allow for heterogeneous symptom profiles but genetic analysis of major depressive symptoms has the potential to identify clinical and etiological subtypes. There are several challenges to integrating symptom data from genetically informative cohorts, such as sample size differences between clinical and community cohorts and various patterns of missing data.
Methods
We conducted genome-wide association studies of major depressive symptoms in three cohorts that were enriched for participants with a diagnosis of depression (Psychiatric Genomics Consortium, Australian Genetics of Depression Study, Generation Scotland) and three community cohorts who were not recruited on the basis of diagnosis (Avon Longitudinal Study of Parents and Children, Estonian Biobank, and UK Biobank). We fit a series of confirmatory factor models with factors that accounted for how symptom data was sampled and then compared alternative models with different symptom factors.
Results
The best fitting model had a distinct factor for Appetite/Weight symptoms and an additional measurement factor that accounted for the skip-structure in community cohorts (use of Depression and Anhedonia as gating symptoms).
Conclusion
The results show the importance of assessing the directionality of symptoms (such as hypersomnia versus insomnia) and of accounting for study and measurement design when meta-analyzing genetic association data.
Mössbauer spectra of 9 glauconite samples from Upper Cretaceous and Lower Tertiary strata in the South Island of New Zealand contain a broad shoulder due to low intensity absorption continuous between 1.0 and 2.5 mm/sec when the absorber is at room temperature; the shoulder is absent, and sharp peaks are apparent in spectra taken with the absorber at 80°K. The data suggest that electron transfer occurs between adjacent Fe3+ and Fe2+ ions at room temperature. The low temperature spectra indicate that all Fe in the glauconites is in octahedral coordination. Fe3+ and Fe2+ ions occur in both eis and trans sites; Fe3+ shows a strong preference for eis sites whereas Fe2+ shows an even stronger preference for trans sites.
The partially variable oxidation state of Fe in glauconite is interpreted in terms of a geochemical model for glauconitization of a degraded or incomplete progenitor phyllosilicate. The model involves exchange of Fe2+ for other cations which temporarily stabilize the progenitor, followed by Fe2+-Fe3+ charge transfer reactions. Each reaction results from the system's tendency towards equilibrium. The model is supported by the observation that artificially leached glauconite increases both its Fe3+ and its Fe2+ content when placed in a solution containing Fe2+ as the only Fe ion present.
Background: Efgartigimod, a human immunoglobulin G (IgG)1 antibody Fc fragment, blocks the neonatal Fc receptor, decreasing IgG recycling and reducing pathogenic IgG autoantibody levels. ADHERE assessed the efficacy and safety of efgartigimod PH20 subcutaneous (SC; co-formulated with recombinant human hyaluronidase PH20) in chronic inflammatory demyelinating polyneuropathy (CIDP). Methods: ADHERE enrolled participants with CIDP (treatment naive or on standard treatments withdrawn during run-in period) and consisted of open-label Stage A (efgartigimod PH20 SC once weekly [QW]), and randomized (1:1) Stage B (efgartigimod or placebo QW). Primary outcomes were clinical improvement (assessed with aINCAT, I-RODS, or mean grip strength; Stage A) and time to first aINCAT score deterioration (relapse; Stage B). Secondary outcomes included treatment-emergent adverse events (TEAEs) incidence. Results: 322 participants entered Stage A. 214 (66.5%) were considered responders, randomized, and treated in Stage B. Efgartigimod significantly reduced the risk of relapse (HR: 0.394; 95% CI: 0.25–0.61) versus placebo (p=0.000039). Reduced risk of relapse occurred in participants receiving corticosteroids, intravenous or SC immunoglobulin, or no treatment before study entry. Most TEAEs were mild to moderate; 3 deaths occurred, none related to efgartigimod. Conclusions: Participants treated with efgartigimod PH20 SC maintained a clinical response and remained relapse-free longer than those treated with placebo.
Mangroves, tidal marshes and seagrasses have experienced extensive historical reduction in extent due to direct and indirect effects of anthropogenic land use change. Habitat loss has contributed carbon emissions and led to foregone opportunities for carbon sequestration, which are disproportionately large due to high ‘blue carbon’ stocks and sequestration rates in these coastal ecosystems. As such, there has been a rapid increase in interest in using coastal habitat restoration as a climate change mitigation tool. This review shows that restoration efforts are able to substantially increase blue carbon stocks, while also having a positive impact on various gaseous fluxes. However, blue carbon increases are spatially variable, due to biophysical factors such as climate and geomorphic setting. While there are potentially hundreds of thousands of hectares of land that may be biophysically suitable for restoration, these activities are still often conducted at small scales and with mixed success. Maximizing potential carbon gains through blue carbon restoration will require managers and coastal planners to overcome the myriad socioeconomic and governance constraints related to land tenure, legislation, target setting and cost, which often push restoration projects into locations that are biophysically unsuitable for plant colonization.
Selective serotonin reuptake inhibitors (SSRIs) are first-line pharmacological treatments for depression and anxiety. However, little is known about how pharmacological action is related to cognitive and affective processes. Here, we examine whether specific reinforcement learning processes mediate the treatment effects of SSRIs.
Methods
The PANDA trial was a multicentre, double-blind, randomized clinical trial in UK primary care comparing the SSRI sertraline with placebo for depression and anxiety. Participants (N = 655) performed an affective Go/NoGo task three times during the trial and computational models were used to infer reinforcement learning processes.
Results
There was poor task performance: only 54% of the task runs were informative, with more informative task runs in the placebo than in the active group. There was no evidence for the preregistered hypothesis that Pavlovian inhibition was affected by sertraline. Exploratory analyses revealed that in the sertraline group, early increases in Pavlovian inhibition were associated with improvements in depression after 12 weeks. Furthermore, sertraline increased how fast participants learned from losses and faster learning from losses was associated with more severe generalized anxiety symptoms.
Conclusions
The study findings indicate a relationship between aversive reinforcement learning mechanisms and aspects of depression, anxiety, and SSRI treatment, but these relationships did not align with the initial hypotheses. Poor task performance limits the interpretability and likely generalizability of the findings, and highlights the critical importance of developing acceptable and reliable tasks for use in clinical studies.
Funding
This article presents research supported by NIHR Program Grants for Applied Research (RP-PG-0610-10048), the NIHR BRC, and UCL, with additional support from IMPRS COMP2PSYCH (JM, QH) and a Wellcome Trust grant (QH).
Helminth parasites were studied in the wood mouse, Apodemus sylvaticus, in southern England in September of each of four successive years (1994–1997). Nine species of helminths were recorded: five nematodes (Heligmosomoides polygyrus, Syphacia stroma, Pelodera strongyloides, Trichuris muris, Capillaria murissylvatici), two cestodes (Microsomacanthus crenata, Taenia taeniaeformis) and two trematodes (Corrigia vitta, Brachylaemus recurvum). In total, 134 mice were examined and 91.8% carried at least one species of helminth. The majority of mice carried two to three species (60.5%) and the highest combination was six of the nine species recorded in the study. The patterns of between-year variations in the prevalence and abundance of infection were different for each of the six species for which sufficient quantitative data were available to enable statistical analysis. For H. polygyrus, the most important source of variation arose from between-year differences, host age and the interaction of these factors: abundance increased with host age but in 1995 the age pattern was markedly different from that in the remaining years. The abundance of C. vitta also varied significantly between years but additionally there was a strong independent age effect. For M. crenata, the year × age interaction was significant, indicating that abundance among different age cohorts varied from year to year but there was also a weak significant main effect of age arising from the youngest age cohort carrying no parasites and the oldest age cohort the heaviest infections. For P. strongyloides the only significant factor was between-year variation with 1995 being a year of exceptionally low prevalence and abundance of infection. No significant between-year variation was detected for S. stroma but there was a strong sex effect (males carrying heavier infections) and an age effect (older mice of both sexes carrying heavier infections). The abundance of Trichuris muris varied only in relation to host age, worm burdens growing in intensity with increasing age, but there was also a significant interaction between year and host sex with respect to prevalence. For the remaining three species, the prevalence of infections was too low (< 8.2%) to enable any meaningful interpretation. This analysis emphasizes the need for carefully controlled statistical procedures in aiding the interpretation and the prioritization of the factors affecting worm burdens in wild rodents.
The origins and timing of inpatient room sink contamination with carbapenem-resistant organisms (CROs) are poorly understood.
Methods:
We performed a prospective observational study to describe the timing, rate, and frequency of CRO contamination of in-room handwashing sinks in 2 intensive care units (ICU) in a newly constructed hospital bed tower. Study units, A and B, were opened to patient care in succession. The patients in unit A were moved to a new unit in the same bed tower, unit B. Each unit was similarly designed with 26 rooms and in-room sinks. Microbiological samples were taken every 4 weeks from 3 locations from each study sink: the top of the bowl, the drain cover, and the p-trap. The primary outcome was sink conversion events (SCEs), defined as CRO contamination of a sink in which CRO had not previously been detected.
Results:
Sink samples were obtained 22 times from September 2020 to June 2022, giving 1,638 total environmental cultures. In total, 2,814 patients were admitted to study units while sink sampling occurred. We observed 35 SCEs (73%) overall; 9 sinks (41%) in unit A became contaminated with CRO by month 10, and all 26 sinks became contaminated in unit B by month 7. Overall, 299 CRO isolates were recovered; the most common species were Enterobacter cloacae and Pseudomonas aeruginosa.
Conclusion:
CRO contamination of sinks in 2 newly constructed ICUs was rapid and cumulative. Our findings support in-room sinks as reservoirs of CRO and emphasize the need for prevention strategies to mitigate contamination of hands and surfaces from CRO-colonized sinks.
Garnierites represent significant Ni ore minerals in the many Ni-laterite deposits worldwide. The occurrence of a variety of garnierite minerals with variable Ni content poses questions about the conditions of their formation. From an aqueous-solution equilibrium thermodynamic point of view, the present study examines the conditions that favor the precipitation of a particular garnierite phase and the mechanism of Ni-enrichment, and gives an explanation to the temporal and spatial succession of different garnierite minerals in Ni-laterite deposits. The chemical and structural characterization of garnierite minerals from many nickel laterite deposits around the world show that this group of minerals is formed essentially by an intimate intermixing of three Mg-Ni phyllosilicate solid solutions: serpentine-népouite, kerolite-pimelite, and sepiolite-falcondoite, without or with very small amounts of Al in their composition. The present study deals with garnierites which are essentially Al-free. The published experimental dissolution constants for Mg end-members of the above solid solutions and the calculated constants for pure Ni end-members were used to calculate Lippmann diagrams for the three solid solutions, on the assumption that they are ideal. With the help of these diagrams, congruent dissolution of Ni-poor primary minerals, followed by equilibrium precipitation of Ni-rich secondary phyllosilicates, is proposed as an efficient mechanism for Ni supergene enrichment in the laterite profile. The stability fields of the solid solutions were constructed using [log aSiO2(aq), log ((aMg2+aNi2+)/(aH+)2)] (predominance) diagrams. These, combined with Lippmann diagrams, give an almost complete chemical characterization of the solution and the precipitating phase(s) in equilibrium. The temporal and spatial succession of hydrous Mg- Ni phyllosilicates encountered in Ni-laterite deposits is explained by the small mobility of silica and the increase in its activity.
Executive functions (EFs) are considered to be both unitary and diverse functions with common conceptualizations consisting of inhibitory control, working memory, and cognitive flexibility. Current research indicates that these abilities develop along different timelines and that working memory and inhibitory control may be foundational for cognitive flexibility, or the ability to shift attention between tasks or operations. Very few interventions target cognitive flexibility despite its importance for academic or occupational tasks, social skills, problem-solving, and goal-directed behavior in general, and the ability is commonly impaired in individuals with neurodevelopmental disorders (NDDs) such as autism spectrum disorder, attention deficit hyperactivity disorder, and learning disorders. The current study investigated a tablet-based cognitive flexibility intervention, Dino Island (DI), that combines a game-based, process-specific intervention with compensatory metacognitive strategies as delivered by classroom aides within a school setting.
Participants and Methods:
20 children between ages 6-12 years (x̄ = 10.83 years) with NDDs and identified executive function deficits and their assigned classroom aides (i.e., “interventionists”) were randomly assigned to either DI or an educational game control condition. Interventionists completed a 2-4 hour online training course and a brief, remote Q&A session with the research team, which provided key information for delivering the intervention such as game-play and metacognitive/behavioral strategy instruction. Fidelity checks were conducted weekly. Interventionists were instructed to deliver 14-16 hours of intervention during the school day over 6-8 weeks, divided into 3-4 weekly sessions of 30-60 minutes each. Baseline and post-intervention assessments consisted of cognitive measures of cognitive flexibility (Minnesota Executive Function Scale), working memory (Weschler Intelligence Scales for Children, 4th Edn. Integrated Spatial Span) and parent-completed EF rating scales (Behavior Rating Inventory of Executive Function).
Results:
Samples sizes were smaller than expected due to COVID-19 related disruptions within schools, so nonparametric analyses were conducted to explore trends in the data. Results of the Mann-Whitney U test indicated that participants within the DI condition made greater gains in cognitive flexibility with a trend towards significance (p = 0.115. After dummy coding for positive change, results also indicated that gains in spatial working memory differed by condition (p = 0.127). Similarly, gains in task monitoring trended towards significant difference by condition.
Conclusions:
DI, a novel EF intervention, may be beneficial to cognitive flexibility, working memory, and monitoring skills within youth with EF deficits. Though there were many absences and upheavals within the participating schools related to COVID-19, it is promising to see differences in outcomes with such a small sample. This poster will expand upon the current results as well as future directions for the DI intervention.
The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery (WCPCCS) will be held in Washington DC, USA, from Saturday, 26 August, 2023 to Friday, 1 September, 2023, inclusive. The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery will be the largest and most comprehensive scientific meeting dedicated to paediatric and congenital cardiac care ever held. At the time of the writing of this manuscript, The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery has 5,037 registered attendees (and rising) from 117 countries, a truly diverse and international faculty of over 925 individuals from 89 countries, over 2,000 individual abstracts and poster presenters from 101 countries, and a Best Abstract Competition featuring 153 oral abstracts from 34 countries. For information about the Eighth World Congress of Pediatric Cardiology and Cardiac Surgery, please visit the following website: [www.WCPCCS2023.org]. The purpose of this manuscript is to review the activities related to global health and advocacy that will occur at the Eighth World Congress of Pediatric Cardiology and Cardiac Surgery.
Acknowledging the need for urgent change, we wanted to take the opportunity to bring a common voice to the global community and issue the Washington DC WCPCCS Call to Action on Addressing the Global Burden of Pediatric and Congenital Heart Diseases. A copy of this Washington DC WCPCCS Call to Action is provided in the Appendix of this manuscript. This Washington DC WCPCCS Call to Action is an initiative aimed at increasing awareness of the global burden, promoting the development of sustainable care systems, and improving access to high quality and equitable healthcare for children with heart disease as well as adults with congenital heart disease worldwide.
Accelerated biological ageing might contribute to the higher prevalence of age-related diseases and excess mortality amongst individuals with mental disorders. Recent advances in machine learning and the collection of high-dimensional molecular “omics” data allow for the quantification of biological age.
Objectives
The aim of this study was to use machine learning methods to predict biological age from nuclear magnetic resonance spectroscopy metabolomics data and to identify psychiatric traits associated with accelerated biological ageing.
Methods
The UK Biobank is a multicentre community-based observational study that recruited >500,000 middle-aged and older adults. 168 metabolomic measures were quantified using the Nightingale Health platform. Phase 1 release of these data included a random subset of 118,462 UK Biobank participants. Metabolomic age delta (MetaboAgeΔ) was defined as the difference between predicted biological age and observed chronological age. We estimated group differences in MetaboAgeΔ between individuals with and without mental disorders and examined whether polygenic scores for mental disorders predicted MetaboAgeΔ.
Results
Up to 110,780 participants with complete data on all metabolomic measures were included in the analysis. Individuals with a history of mental disorders had higher MetaboAgeΔ values than people without a mental illness. For example, MetaboAgeΔ suggested that the difference between predicted biological age and observed chronological age was about two-years greater amongst individuals with bipolar disorder than amongst people without mental illness. Polygenic scores for mental disorders were positively correlated with MetaboAgeΔ.
Conclusions
These findings suggest that individuals with a history of mental disorders or with higher polygenic scores for mental disorders were biologically older than their chronological age.
We assessed Oxivir Tb wipe disinfectant residue in a controlled laboratory setting to evaluate low environmental contamination of SARS-CoV-2. Frequency of viral RNA detection was not statistically different between intervention and control arms on day 3 (P=0.14). Environmental contamination viability is low; residual disinfectant did not significantly contribute to low contamination.
Three-dimensional (3D) food printing is a rapidly emerging technology offering unprecedented potential for customised food design and personalised nutrition. Here, we evaluate the technological advances in extrusion-based 3D food printing and its possibilities to promote healthy and sustainable eating. We consider the challenges in implementing the technology in real-world applications. We propose viable applications for 3D food printing in health care, health promotion and food waste upcycling. Finally, we outline future work on 3D food printing in food safety, acceptability and economics, ethics and regulations.
People with neuropsychiatric symptoms often experience delay in accurate diagnosis. Although cerebrospinal fluid neurofilament light (CSF NfL) shows promise in distinguishing neurodegenerative disorders (ND) from psychiatric disorders (PSY), its accuracy in a diagnostically challenging cohort longitudinally is unknown.
Methods:
We collected longitudinal diagnostic information (mean = 36 months) from patients assessed at a neuropsychiatry service, categorising diagnoses as ND/mild cognitive impairment/other neurological disorders (ND/MCI/other) and PSY. We pre-specified NfL > 582 pg/mL as indicative of ND/MCI/other.
Results:
Diagnostic category changed from initial to final diagnosis for 23% (49/212) of patients. NfL predicted the final diagnostic category for 92% (22/24) of these and predicted final diagnostic category overall (ND/MCI/other vs. PSY) in 88% (187/212), compared to 77% (163/212) with clinical assessment alone.
Conclusions:
CSF NfL improved diagnostic accuracy, with potential to have led to earlier, accurate diagnosis in a real-world setting using a pre-specified cut-off, adding weight to translation of NfL into clinical practice.
Prenatal adversity has been linked to later psychopathology. Yet, research on cumulative prenatal adversity, as well as its interaction with offspring genotype, on brain and behavioral development is scarce. With this study, we aimed to address this gap. In Finnish mother–infant dyads, we investigated the association of a cumulative prenatal adversity sum score (PRE-AS) with (a) child emotional and behavioral problems assessed with the Strengths and Difficulties Questionnaire at 4 and 5 years (N = 1568, 45.3% female), (b) infant amygdalar and hippocampal volumes (subsample N = 122), and (c) its moderation by a hippocampal-specific coexpression polygenic risk score based on the serotonin transporter (SLC6A4) gene. We found that higher PRE-AS was linked to greater child emotional and behavioral problems at both time points, with partly stronger associations in boys than in girls. Higher PRE-AS was associated with larger bilateral infant amygdalar volumes in girls compared to boys, while no associations were found for hippocampal volumes. Further, hyperactivity/inattention in 4-year-old girls was related to both genotype and PRE-AS, the latter partially mediated by right amygdalar volumes as preliminary evidence suggests. Our study is the first to demonstrate a dose-dependent sexually dimorphic relationship between cumulative prenatal adversity and infant amygdalar volumes.