We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We have conducted a widefield, wideband, snapshot survey using the Australian SKA Pathfinder (ASKAP) referred to as the Rapid ASKAP Continuum Survey (RACS). RACS covers $\approx 90$% of the sky, with multiple observing epochs in three frequency bands sampling the ASKAP frequency range of 700–1 800 MHz. This paper describes the third major epoch at 1 655.5 MHz, RACS-high, and the subsequent imaging and catalogue data release. The RACS-high observations at 1 655.5 MHz are otherwise similar to the previously released RACS-mid (at 1 367.5 MHz) and were calibrated and imaged with minimal changes. From the 1 493 images covering the sky up to declination $\approx +48^\circ$, we present a catalogue of 2 677 509 radio sources. The catalogue is constructed from images with a median root-mean-square noise of $\approx 195$$\unicode{x03BC}$Jy PSF$^{-1}$ (point-spread function) and a median angular resolution of $11{\stackrel{\prime\prime}{\raise-0pt\hbox{.}}}8 \times 8{\stackrel{\prime\prime}{\raise-0pt\hbox{.}}}1$. The overall reliability of the catalogue is estimated to be 99.18%, and we find a decrease in reliability as angular resolution improves. We estimate the brightness scale to be accurate to 10%, and the astrometric accuracy to be within $\approx 0{\stackrel{\prime\prime}{\raise-0pt\hbox{.}}}6$ in right ascension and $\approx 0{\stackrel{\prime\prime}{\raise-0pt\hbox{.}}}7$ in declination after correction of a systematic declination-dependent offset. All data products from RACS-high, including calibrated visibility datasets, images from individual observations, full-sensitivity mosaics, and the all-sky catalogue are available at the CSIRO ASKAP Science Data Archive.
The Automated Meteorology—Ice—Geophysics Observation System 3 (AMIGOS-3) is a multi-sensor on-ice ocean mooring and weather, camera and precision GPS measurement station, controlled by a Python script. The station is designed to be deployed on floating ice in the polar regions and operate unattended for up to several years. Ocean mooring sensors (SeaBird MicroCAT and Nortek Aquadopp) record conductivity, temperature and depth (reported at 10 min intervals), and current velocity (hourly intervals). A Silixa XT fiber-optic distributed temperature sensing system provides a temperature profile time-series through the ice and ocean column with a cadence of 6 d−1 to 1 week−1 depending on available station power. A subset of the station data is telemetered by Iridium modem. Two-way communication, using both single-burst data and file transfer protocols, facilitates station data collection changes and power management. Power is supplied by solar panels and a sealed lead-acid battery system. Two AMIGOS-3 systems were installed on the Thwaites Eastern Ice Shelf in January 2020, providing data well into 2022. We discuss the components of the system and present several of the data sets, summarizing observed climate, ice and ocean conditions.
Inappropriate diagnosis and treatment of urinary tract infections (UTIs) contribute to antibiotic overuse. The Inappropriate Diagnosis of UTI (ID-UTI) measure uses a standard definition of asymptomatic bacteriuria (ASB) and was validated in large hospitals. Critical access hospitals (CAHs) have different resources which may make ASB stewardship challenging. To address this inequity, we adapted the ID-UTI metric for use in CAHs and assessed the adapted measure’s feasibility, validity, and reliability.
Design:
Retrospective observational study
Participants:
10 CAHs
Methods:
From October 2022 to July 2023, CAHs submitted clinical information for adults admitted or discharged from the emergency department who received antibiotics for a positive urine culture. Feasibility of case submission was assessed as the number of CAHs achieving the goal of 59 cases. Validity (sensitivity/specificity) and reliability of the ID-UTI definition were assessed by dual-physician review of a random sample of submitted cases.
Results:
Among 10 CAHs able to participate throughout the study period, only 40% (4/10) submitted >59 cases (goal); an additional 3 submitted >35 cases (secondary goal). Per the ID-UTI metric, 28% (16/58) of cases were ASB. Compared to physician review, the ID-UTI metric had 100% specificity (ie all cases called ASB were ASB on clinical review) but poor sensitivity (48.5%; ie did not identify all ASB cases). Measure reliability was high (93% [54/58] agreement).
Conclusions:
Similar to measure performance in non-CAHs, the ID-UTI measure had high reliability and specificity—all cases identified as ASB were considered ASB—but poor sensitivity. Though feasible for a subset of CAHs, barriers remain.
Asymptomatic bacteriuria (ASB) treatment is a common form of antibiotic overuse and diagnostic error. Antibiotic stewardship using the inappropriate diagnosis of urinary tract infection (ID-UTI) measure has reduced ASB treatment in diverse hospitals. However, critical access hospitals (CAHs) have differing resources that could impede stewardship. We aimed to determine if stewardship including the ID-UTI measure could reduce ASB treatment in CAHs.
Methods:
From October 2022 to July 2023, ten CAHs participated in an Intensive Quality Improvement Cohort (IQIC) program including 3 interventions to reduce ASB treatment: 1) learning labs (ie, didactics with shared learning), 2) mentoring, and 3) data-driven performance reports including hospital peer comparison based on the ID-UTI measure. To assess effectiveness of the IQIC program, change in the ID-UTI measure (ie, percentage of patients treated for a UTI who had ASB) was compared to two non-equivalent control outcomes (antibiotic duration and unjustified fluoroquinolone use).
Results:
Ten CAHs abstracted a total of 608 positive urine culture cases. Over the cohort period, the percentage of patients treated for a UTI who had ASB declined (aOR per month = 0.935, 95% CI: 0.873, 1.001, P = 0.055) from 28.4% (range across hospitals, 0%-63%) in the first to 18.6% (range, 0%-33%) in the final month. In contrast, antibiotic duration and unjustified fluoroquinolone use were unchanged (P = 0.768 and 0.567, respectively).
Conclusions:
The IQIC intervention, including learning labs, mentoring, and performance reports using the ID-UTI measure, was associated with a non-significant decrease in treatment of ASB, while control outcomes (duration and unjustified fluoroquinolone use) did not change.
Children and adolescents with a history of adverse childhood experiences (ACEs) are more likely than their peers to develop mental health difficulties, but not enough is known about their help-seeking behaviours and preferences. We aimed to determine whether ACEs are associated with access to and perceived unmet need for mental health services and support amongst secondary school students.
Methods
We used multi-level logistic regression with data from the 2020 OxWell Student Survey to assess whether ACEs were associated with (1) prior access to mental health support and (2) perceived unmet need for mental health services in a community sample of English secondary school students. We assessed ACEs as a cumulative score from the Center for Youth Wellness Adverse Childhood Experiences Questionnaire: Teen Self-Report version and accounted for current mental health difficulties as measured by the 25-item Revised Children’s Anxiety and Depression Scale (RCADS).
Results
Our analysis included 2018 students across 64 schools, of whom 29.9% (598/2002) reported prior access to mental health support. Of those not reporting prior access, 34.1% (469/1377) reported a perceived unmet need for services. In the unadjusted models, cumulative ACE scores were significantly positively associated with both prior access to mental health support (odds ratio (OR) = 1.36; 95% confidence interval (CI): 1.29–1.43) and perceived unmet need for mental health services (OR = 1.47; 95% CI: 1.37–1.59), meaning that students who had experienced adversity had a greater chance of having previously accessed support as well as perceiving an unmet need for services. After adjusting for mental health difficulties and other sociodemographic variables, cumulative ACE scores were positively associated with prior access (adjusted OR (aOR) = 1.25; 95% CI: 1.17–1.34 with a significant interaction between RCADS and ACE scores, aOR = 0.88; 95% CI: 0.84–0.93) as well as perceived unmet need (aOR = 1.32; 95% CI: 1.21–1.43 with a significant interaction between RCADS and ACE scores, aOR = 0.85; 95% CI: 0.78–0.91).
Conclusions
Although it is encouraging that adolescents with experience of adversity are more likely than their peers with similar levels of depression and anxiety symptoms to have accessed mental health support, there remains a concern that those who have not accessed support are more likely to perceive an as-yet unmet need for it. Mental health support must be available, accessible and acceptable to all who need it, especially for those groups that traditionally have not accessed services, including the more marginalised and vulnerable populations.
We have employed the VULCAN laser facility to generate a laser plasma X-ray source for use in photoionization experiments. A nanosecond laser pulse with an intensity of order 1015 Wcm−2 was used to irradiate thin Ag or Sn foil targets coated onto a parylene substrate, and the L-shell emission in the 3.3–4.4 keV range was recorded for both the laser-irradiated and nonirradiated sides. Both the experimental and simulation results show higher laser to X-ray conversion yields for Ag compared with Sn, with our simulations indicating yields approximately a factor of two higher than those found in the experiments. Although detailed angular data were not available experimentally, the simulations indicate that the emission is quite isotropic on the laser-irradiated side but shows close to a cosine variation on the nonirradiated side of the target as seen experimentally in the previous work.
The Australian SKA Pathfinder (ASKAP) has surveyed the sky at multiple frequencies as part of the Rapid ASKAP Continuum Survey (RACS). The first two RACS observing epochs, at 887.5 (RACS-low) and 1 367.5 (RACS-mid) MHz, have been released (McConnell, et al. 2020, PASA, 37, e048; Duchesne, et al. 2023, PASA, 40, e034). A catalogue of radio sources from RACS-low has also been released, covering the sky south of declination $+30^{\circ}$ (Hale, et al., 2021, PASA, 38, e058). With this paper, we describe and release the first set of catalogues from RACS-mid, covering the sky below declination $+49^{\circ}$. The catalogues are created in a similar manner to the RACS-low catalogue, and we discuss this process and highlight additional changes. The general purpose primary catalogue covering 36 200 deg$^2$ features a variable angular resolution to maximise sensitivity and sky coverage across the catalogued area, with a median angular resolution of $11.2^{\prime\prime} \times 9.3^{\prime\prime}$. The primary catalogue comprises 3 105 668 radio sources, including those in the Galactic Plane (2 861 923 excluding Galactic latitudes of $|b|<5^{\circ}$), and we estimate the catalogue to be 95% complete for sources above 2 mJy. With the primary catalogue, we also provide two auxiliary catalogues. The first is a fixed-resolution, 25-arcsec catalogue approximately matching the sky coverage of the RACS-low catalogue. This 25-arcsec catalogue is constructed identically to the primary catalogue, except images are convolved to a less-sensitive 25-arcsec angular resolution. The second auxiliary catalogue is designed for time-domain science and is the concatenation of source lists from the original RACS-mid images with no additional convolution, mosaicking, or de-duplication of source entries to avoid losing time-variable signals. All three RACS-mid catalogues, and all RACS data products, are available through the CSIRO ASKAP Science Data Archive (https://research.csiro.au/casda/).
The Australian SKA Pathfinder (ASKAP) radio telescope has carried out a survey of the entire Southern Sky at 887.5 MHz. The wide area, high angular resolution, and broad bandwidth provided by the low-band Rapid ASKAP Continuum Survey (RACS-low) allow the production of a next-generation rotation measure (RM) grid across the entire Southern Sky. Here we introduce this project as Spectral and Polarisation in Cutouts of Extragalactic sources from RACS (SPICE-RACS). In our first data release, we image 30 RACS-low fields in Stokes I, Q, U at 25$^{\prime\prime}$ angular resolution, across 744–1032 MHz with 1 MHz spectral resolution. Using a bespoke, highly parallelised, software pipeline we are able to rapidly process wide-area spectro-polarimetric ASKAP observations. Notably, we use ‘postage stamp’ cutouts to assess the polarisation properties of 105912 radio components detected in total intensity. We find that our Stokes Q and U images have an rms noise of $\sim$80 $\unicode{x03BC}$Jy PSF$^{-1}$, and our correction for instrumental polarisation leakage allows us to characterise components with $\gtrsim$1% polarisation fraction over most of the field of view. We produce a broadband polarised radio component catalogue that contains 5818 RM measurements over an area of $\sim$1300 deg$^{2}$ with an average error in RM of $1.6^{+1.1}_{-1.0}$ rad m$^{-2}$, and an average linear polarisation fraction $3.4^{+3.0}_{-1.6}$ %. We determine this subset of components using the conditions that the polarised signal-to-noise ratio is $>$8, the polarisation fraction is above our estimated polarised leakage, and the Stokes I spectrum has a reliable model. Our catalogue provides an areal density of $4\pm2$ RMs deg$^{-2}$; an increase of $\sim$4 times over the previous state-of-the-art (Taylor, Stil, Sunstrum 2009, ApJ, 702, 1230). Meaning that, having used just 3% of the RACS-low sky area, we have produced the 3rd largest RM catalogue to date. This catalogue has broad applications for studying astrophysical magnetic fields; notably revealing remarkable structure in the Galactic RM sky. We will explore this Galactic structure in a follow-up paper. We will also apply the techniques described here to produce an all-Southern-sky RM catalogue from RACS observations. Finally, we make our catalogue, spectra, images, and processing pipeline publicly available.
The Australian SKA Pathfinder (ASKAP) is being used to undertake a campaign to rapidly survey the sky in three frequency bands across its operational spectral range. The first pass of the Rapid ASKAP Continuum Survey (RACS) at 887.5 MHz in the low band has already been completed, with images, visibility datasets, and catalogues made available to the wider astronomical community through the CSIRO ASKAP Science Data Archive (CASDA). This work presents details of the second observing pass in the mid band at 1367.5 MHz, RACS-mid, and associated data release comprising images and visibility datasets covering the whole sky south of $\delta_{\text{J2000}}=+49^\circ$. This data release incorporates selective peeling to reduce artefacts around bright sources, as well as accurately modelled primary beam responses. The Stokes I images reach a median noise of 198 $\mu$Jy PSF$^{-1}$ with a declination-dependent angular resolution of 8.1–47.5 arcsec that fills a niche in the existing ecosystem of large-area astronomical surveys. We also supply Stokes V images after application of a widefield leakage correction, with a median noise of 165 $\mu$Jy PSF$^{-1}$. We find the residual leakage of Stokes I into V to be $\lesssim 0.9$–$2.4$% over the survey. This initial RACS-mid data release will be complemented by a future release comprising catalogues of the survey region. As with other RACS data releases, data products from this release will be made available through CASDA.
We present a comparison between the performance of a selection of source finders (SFs) using a new software tool called Hydra. The companion paper, Paper I, introduced the Hydra tool and demonstrated its performance using simulated data. Here we apply Hydra to assess the performance of different source finders by analysing real observational data taken from the Evolutionary Map of the Universe (EMU) Pilot Survey. EMU is a wide-field radio continuum survey whose primary goal is to make a deep ($20\mu$Jy/beam RMS noise), intermediate angular resolution ($15^{\prime\prime}$), 1 GHz survey of the entire sky south of $+30^{\circ}$ declination, and expecting to detect and catalogue up to 40 million sources. With the main EMU survey it is highly desirable to understand the performance of radio image SF software and to identify an approach that optimises source detection capabilities. Hydra has been developed to refine this process, as well as to deliver a range of metrics and source finding data products from multiple SFs. We present the performance of the five SFs tested here in terms of their completeness and reliability statistics, their flux density and source size measurements, and an exploration of case studies to highlight finder-specific limitations.
The latest generation of radio surveys are now producing sky survey images containing many millions of radio sources. In this context it is highly desirable to understand the performance of radio image source finder (SF) software and to identify an approach that optimises source detection capabilities. We have created Hydra to be an extensible multi-SF and cataloguing tool that can be used to compare and evaluate different SFs. Hydra, which currently includes the SFs Aegean, Caesar, ProFound, PyBDSF, and Selavy, provides for the addition of new SFs through containerisation and configuration files. The SF input RMS noise and island parameters are optimised to a 90% ‘percentage real detections’ threshold (calculated from the difference between detections in the real and inverted images), to enable comparison between SFs. Hydra provides completeness and reliability diagnostics through observed-deep ($\mathcal{D}$) and generated-shallow ($\mathcal{S}$) images, as well as other statistics. In addition, it has a visual inspection tool for comparing residual images through various selection filters, such as S/N bins in completeness or reliability. The tool allows the user to easily compare and evaluate different SFs in order to choose their desired SF, or a combination thereof. This paper is part one of a two part series. In this paper we introduce the Hydra software suite and validate its $\mathcal{D/S}$ metrics using simulated data. The companion paper demonstrates the utility of Hydra by comparing the performance of SFs using both simulated and real images.
Alterations in heart rate (HR) may provide new information about physiological signatures of depression severity. This 2-year study in individuals with a history of recurrent major depressive disorder (MDD) explored the intra-individual variations in HR parameters and their relationship with depression severity.
Methods
Data from 510 participants (Number of observations of the HR parameters = 6666) were collected from three centres in the Netherlands, Spain, and the UK, as a part of the remote assessment of disease and relapse-MDD study. We analysed the relationship between depression severity, assessed every 2 weeks with the Patient Health Questionnaire-8, with HR parameters in the week before the assessment, such as HR features during all day, resting periods during the day and at night, and activity periods during the day evaluated with a wrist-worn Fitbit device. Linear mixed models were used with random intercepts for participants and countries. Covariates included in the models were age, sex, BMI, smoking and alcohol consumption, antidepressant use and co-morbidities with other medical health conditions.
Results
Decreases in HR variation during resting periods during the day were related with an increased severity of depression both in univariate and multivariate analyses. Mean HR during resting at night was higher in participants with more severe depressive symptoms.
Conclusions
Our findings demonstrate that alterations in resting HR during all day and night are associated with depression severity. These findings may provide an early warning of worsening depression symptoms which could allow clinicians to take responsive treatment measures promptly.
Neuropsychiatric disorders are common in 22q11.2 Deletion Syndrome (22q11DS) with about 25% of affected individuals developing schizophrenia spectrum disorders by young adulthood. Longitudinal evaluation of psychosis spectrum features and neurocognition can establish developmental trajectories and impact on functional outcome.
Methods
157 youth with 22q11DS were assessed longitudinally for psychopathology focusing on psychosis spectrum symptoms, neurocognitive performance and global functioning. We contrasted the pattern of positive and negative psychosis spectrum symptoms and neurocognitive performance differentiating those with more prominent Psychosis Spectrum symptoms (PS+) to those without prominent psychosis symptoms (PS−).
Results
We identified differences in the trajectories of psychosis symptoms and neurocognitive performance between the groups. The PS+ group showed age associated increase in symptom severity, especially negative symptoms and general nonspecific symptoms. Correspondingly, their level of functioning was worse and deteriorated more steeply than the PS− group. Neurocognitive performance was generally comparable in PS+ and PS− groups and demonstrated a similar age-related trajectory. However, worsening executive functioning distinguished the PS+ group from PS− counterparts. Notably, of the three executive function measures examined, only working memory showed a significant difference between the groups in rate of change. Finally, structural equation modeling showed that neurocognitive decline drove the clinical change.
Conclusions
Youth with 22q11DS and more prominent psychosis features show worsening of symptoms and functional decline driven by neurocognitive decline, most related to executive functions and specifically working memory. The results underscore the importance of working memory in the developmental progression of psychosis.
Cognitive symptoms are common during and following episodes of depression. Little is known about the persistence of self-reported and performance-based cognition with depression and functional outcomes.
Methods
This is a secondary analysis of a prospective naturalistic observational clinical cohort study of individuals with recurrent major depressive disorder (MDD; N = 623). Participants completed app-based self-reported and performance-based cognitive function assessments alongside validated measures of depression, functional disability, and self-esteem every 3 months. Participants were followed-up for a maximum of 2-years. Multilevel hierarchically nested modelling was employed to explore between- and within-participant variation over time to identify whether persistent cognitive difficulties are related to levels of depression and functional impairment during follow-up.
Results
508 individuals (81.5%) provided data (mean age: 46.6, s.d.: 15.6; 76.2% female). Increasing persistence of self-reported cognitive difficulty was associated with higher levels of depression and functional impairment throughout the follow-up. In comparison to low persistence of objective cognitive difficulty (<25% of timepoints), those with high persistence (>75% of timepoints) reported significantly higher levels of depression (B = 5.17, s.e. = 2.21, p = 0.019) and functional impairment (B = 4.82, s.e. = 1.79, p = 0.002) over time. Examination of the individual cognitive modules shows that persistently impaired executive function is associated with worse functioning, and poor processing speed is particularly important for worsened depressive symptoms.
Conclusions
We replicated previous findings of greater persistence of cognitive difficulty with increasing severity of depression and further demonstrate that these cognitive difficulties are associated with pervasive functional disability. Difficulties with cognition may be an indicator and target for further treatment input.
The purpose of this investigation was to expand upon the limited existing research examining the test–retest reliability, cross-sectional validity and longitudinal validity of a sample of bioelectrical impedance analysis (BIA) devices as compared with a laboratory four-compartment (4C) model. Seventy-three healthy participants aged 19–50 years were assessed by each of fifteen BIA devices, with resulting body fat percentage estimates compared with a 4C model utilising air displacement plethysmography, dual-energy X-ray absorptiometry and bioimpedance spectroscopy. A subset of thirty-seven participants returned for a second visit 12–16 weeks later and were included in an analysis of longitudinal validity. The sample of devices included fourteen consumer-grade and one research-grade model in a variety of configurations: hand-to-hand, foot-to-foot and bilateral hand-to-foot (octapolar). BIA devices demonstrated high reliability, with precision error ranging from 0·0 to 0·49 %. Cross-sectional validity varied, with constant error relative to the 4C model ranging from −3·5 (sd 4·1) % to 11·7 (sd 4·7) %, standard error of the estimate values of 3·1–7·5 % and Lin’s concordance correlation coefficients (CCC) of 0·48–0·94. For longitudinal validity, constant error ranged from −0·4 (sd 2·1) % to 1·3 (sd 2·7) %, with standard error of the estimate values of 1·7–2·6 % and Lin’s CCC of 0·37–0·78. While performance varied widely across the sample investigated, select models of BIA devices (particularly octapolar and select foot-to-foot devices) may hold potential utility for the tracking of body composition over time, particularly in contexts in which the purchase or use of a research-grade device is infeasible.
Morbidity and mortality from coronavirus disease 2019 (COVID-19) have been significant among elderly residents of residential aged-care services (RACS). To prevent incursions of COVID-19 in RACS in Australia, visitors were banned and aged-care workers were encouraged to work at a single site. We conducted a review of case notes and a social network analysis to understand how workplace and social networks enabled the spread of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) among RACS.
Design:
Retrospective outbreak review.
Setting and participants:
Staff involved in COVID-19 outbreaks in RACS in Victoria, Australia, May–October 2020.
Methods:
The Victorian Department of Health COVID-19 case and contact data were reviewed to construct 2 social networks: (1) a work network connecting RACS through workers and (2) a household network connecting to RACS through households. Probable index cases were reviewed to estimate the number and size (number of resident cases and deaths) of outbreaks likely initiated by multisite work versus transmission via households.
Results:
Among 2,033 cases linked to an outbreak as staff, 91 (4.5%) were multisite staff cases. Forty-three outbreaks were attributed to multisite work and 35 were deemed potentially preventable had staff worked at a single site. In addition, 99 staff cases were linked to another RACS outbreak through their household contacts, and 21 outbreaks were attributed to staff–household transmission.
Conclusions:
Limiting worker mobility through single-site policies could reduce the chances of SARS-CoV-2 spreading from one RACS to another. However, initiatives that reduce the chance of transmission via household networks would also be needed.
Higher thalamic volume has been found in children with obsessive-compulsive disorder (OCD) and children with clinical-level symptoms within the general population (Boedhoe et al. 2017, Weeland et al. 2021a). Functionally distinct thalamic nuclei are an integral part of OCD-relevant brain circuitry.
Objectives
We aimed to study the thalamic nuclei volume in relation to subclinical and clinical OCD across different age ranges. Understanding the role of thalamic nuclei and their associated circuits in pediatric OCD could lead towards treatment strategies specifically targeting these circuits.
Methods
We studied the relationship between thalamic nuclei and obsessive-compulsive symptoms (OCS) in a large sample of school-aged children from the Generation R Study (N = 2500) (Weeland et al. 2021b). Using the data from the ENIGMA-OCD working group we conducted mega-analyses to study thalamic subregional volume in OCD across the lifespan in 2,649 OCD patients and 2,774 healthy controls across 29 sites (Weeland et al. 2021c). Thalamic nuclei were grouped into five subregions: anterior, ventral, intralaminar/medial, lateral and pulvinar (Figure 1).
Results
Both children with subclinical and clinical OCD compared with controls show increased volume across multiple thalamic subregions. Adult OCD patients have decreased volume across all subregions (Figure 2), which was mostly driven by medicated and adult-onset patients.
Conclusions
Our results suggests that OCD-related thalamic volume differences are global and not driven by particular subregions and that the direction of effects are driven by both age and medication status.