We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Synthetic Aperture Radar Interferometry (InSAR) is an active remote sensing method that uses repeated radar scans of the Earth's solid surface to measure relative deformation at centimeter precision over a wide swath. It has revolutionized our understanding of the earthquake cycle, volcanic eruptions, landslides, glacier flow, ice grounding lines, ground fluid injection/withdrawal, underground nuclear tests, and other applications requiring high spatial resolution measurements of ground deformation. This book examines the theory behind and the applications of InSAR for measuring surface deformation. The most recent generation of InSAR satellites have transformed the method from investigating 10's to 100's of SAR images to processing 1000's and 10,000's of images using a wide range of computer facilities. This book is intended for students and researchers in the physical sciences, particularly for those working in geophysics, natural hazards, space geodesy, and remote sensing. This title is also available as Open Access on Cambridge Core.
Internet addiction (IA) refers to excessive internet use that causes cognitive impairment or distress. Understanding the neurophysiological mechanisms underpinning IA is crucial for enabling an accurate diagnosis and informing treatment and prevention strategies. Despite the recent increase in studies examining the neurophysiological traits of IA, their findings often vary. To enhance the accuracy of identifying key neurophysiological characteristics of IA, this study used the phase lag index (PLI) and weighted PLI (WPLI) methods, which minimize volume conduction effects, to analyze the resting-state electroencephalography (EEG) functional connectivity. We further evaluated the reliability of the identified features for IA classification using various machine learning methods.
Methods
Ninety-two participants (42 with IA and 50 healthy controls (HCs)) were included. PLI and WPLI values for each participant were computed, and values exhibiting significant differences between the two groups were selected as features for the subsequent classification task.
Results
Support vector machine (SVM) achieved an 83% accuracy rate using PLI features and an improved 86% accuracy rate using WPLI features. t-test results showed analogous topographical patterns for both the WPLI and PLI. Numerous connections were identified within the delta and gamma frequency bands that exhibited significant differences between the two groups, with the IA group manifesting an elevated level of phase synchronization.
Conclusions
Functional connectivity analysis and machine learning algorithms can jointly distinguish participants with IA from HCs based on EEG data. PLI and WPLI have substantial potential as biomarkers for identifying the neurophysiological traits of IA.
Determining an individual’s strategic reasoning capability based solely on choice data is a complex task. This complexity arises because sophisticated players might have non-equilibrium beliefs about others, leading to non-equilibrium actions. In our study, we pair human participants with computer players known to be fully rational. This use of robot players allows us to disentangle limited reasoning capacity from belief formation and social biases. Our results show that, when paired with robots, subjects consistently demonstrate higher levels of rationality, compared to when paired with human players. Furthermore, players’ rationality levels are relatively stable across games when paired with robot players, even though those with intermediate rationality levels exhibit inconsistency across games. Leveraging our experimental design, we identify and document potential causes of this inconsistency.
Patients with chronic insomnia are characterized by alterations in default mode network and alpha oscillations, for which the medial parietal cortex (MPC) is a key node and thus a potential target for interventions.
Methods
Fifty-six adults with chronic insomnia were randomly assigned to 2 mA, alpha-frequency (10 Hz), 30 min active or sham transcranial alternating current stimulation (tACS) applied over the MPC for 10 sessions completed within two weeks, followed by 4- and 6-week visits. The connectivity of the dorsal and ventral posterior cingulate cortex (vPCC) was calculated based on resting functional MRI.
Results
For the primary outcome, the active group showed a higher response rate (≥ 50% reduction in Pittsburgh Sleep Quality Index (PSQI)) at week 6 than that of the sham group (71.4% versus 3.6%) (risk ratio 20.0, 95% confidence interval 2.9 to 139.0, p = 0.0025). For the secondary outcomes, the active therapy induced greater and sustained improvements (versus sham) in the PSQI, depression (17-item Hamilton Depression Rating Scale), anxiety (Hamilton Anxiety Rating Scale), and cognitive deficits (Perceived Deficits Questionnaire-Depression) scores. The response rates in the active group decreased at weeks 8–14 (42.9%–57.1%). Improvement in sleep was associated with connectivity between the vPCC and the superior frontal gyrus and the inferior parietal lobe, whereas vPCC-to-middle frontal gyrus connectivity was associated with cognitive benefits and vPCC-to-ventromedial prefrontal cortex connectivity was associated with alleviation in rumination.
Conclusions
Targeting the MPC with alpha-tACS appears to be an effective treatment for chronic insomnia, and vPCC connectivity represents a prognostic marker of treatment outcome.
When an oblate droplet translates through a viscous fluid under linear shear, it experiences a lateral lift force whose direction and magnitude are influenced by the Reynolds number, the droplet’s viscosity and its aspect ratio. Using a recently developed sharp interface method, we perform three-dimensional direct numerical simulations to explore the evolution of lift forces on oblate droplets across a broad range of these parameters. Our findings reveal that in the low-but-finite Reynolds number regime, the Saffman mechanism consistently governs the lift force. The lift increases with the droplet’s viscosity, aligning with the analytical solution derived by Legendre & Magnaudet (Phys. Fluids, vol. 9, 1997, p. 3572), and also rises with the droplet’s aspect ratio. We propose a semi-analytical correlation to predict this lift force. In the moderate- to high-Reynolds-number regime, distinct behaviours emerge: the $L\hbox{-}$ and $S\hbox{-}$mechanisms, arising from the vorticity contained in the upstream shear flow and the vorticity produced at the droplet surface, dominate for weakly and highly viscous droplets, respectively. Both mechanisms generate counter-rotating streamwise vortices of opposite signs, leading to observed lift reversals with increasing droplet viscosity. Detailed force decomposition based on vorticity moments indicates that in the $L\hbox{-}$mechanism-dominated regime for weakly to moderately viscous droplets, the streamwise vorticity-induced lift approximates the total lift. Conversely, in the $S\hbox{-}$mechanism-dominated regime, for moderately to highly viscous droplets, the streamwise vorticity-induced lift constitutes only a portion of the total lift, with the asymmetric advection of azimuthal vorticity at the droplet interface contributing additional positive lift to counterbalance the $S\hbox{-}$mechanism’s effects. These insights bridge the understanding between inviscid bubbles and rigid particles, enhancing our comprehension of the lift force experienced by droplets in different flow regimes.
A diverse range of services often supplements procedures that involve medical technologies and adds value along patient care pathways. However, these novel elements of value are often not captured in traditional assessment frameworks. ExpertLink is one such example. ExpertLink uses digital solutions to connect clinical experts worldwide, enabling remote training and collaboration, while maintaining the highest standard of patient care.
Methods
Rezum™ is a minimally invasive therapy for patients with symptomatic benign prostatic hyperplasia (BPH). It is a quick day procedure with proven safety, effectiveness, and durability in clinical outcomes. Leveraging ExpertLink, an expert in Sydney, Australia, remotely proctored 11 Rezum™ procedures in Malaysia in November 2022, supporting five urologists in five hospitals across five states within five hours. Efficient and straightforward procedures such as Rezum™ are well suited to remote proctorship. Through this case study, we quantify the sustainability, equity, and access benefits, illustrating the additional value ExpertLink brings across the healthcare continuum and beyond.
Results
For a proctor traveling from Australia to Malaysia, over 6,500 kilometers and 17 hours travel time is saved, equating to an estimated 1,700-kilogram reduction in CO₂ emissions. Without ExpertLink, a proctor may be away from practice for up to a week. ExpertLink allows for continuity of practice, including consultations and procedures, during this time. For five doctors traveling from Malaysia to Australia for training, an estimated 7,400-kilogram reduction in CO₂ emissions and approximately 85 hours travel time is saved. ExpertLink provided 11 geographically dispersed patients with timely access to treatment and expedited the physician learning curve.
Conclusions
This case study illustrates the value for just one technology on one day. ExpertLink embodies novel elements of value that are not captured in traditional value assessment frameworks. Collaborative effort between stakeholders is needed to broaden the view of value in healthcare, incorporate additional elements of value in existing assessment frameworks, and appropriately recognize this often-uncounted value in decision-making.
Modern fluvial sediments provide important information about source-to-sink process and regional tectono-magmatic events in the source area, but many factors, e.g., chemical weathering, sedimentary cycles and source-rock types, can interfere with the establishment of the source-sink system. The Lalin River (LR) and the Jilin Songhua River (JSR) are two important tributaries of the Songhua River in the Songnen Plain in NE China. They have similar flow direction, topography and identical climate backgrounds, but have notably different parent-rock types in the headwater, which provides an opportunity to explore the influencing factors of river sediment composition. To this end, the point bar sediments in the two rivers were sampled for an analysis of geochemistry (including element and Sr-Nd isotopic ratios), heavy mineral and detrital zircon U-Pb dating. The results are indicative of the fact that the two rivers have the similar geochemical composition (e.g., elements and Sr isotopes) as well as chemical weathering (CIA = 51.41–57.60, CIW = 59.68–66.11, PIA = 51.95–60.23, WIP = 56.00–65.47, Rb/Sr = 0.38–0.42) and recycling (SiO2/Al2O3 = 5.79 and 5.03, ICV = 1.0 and 1.2, CIA/WIP = 0.81–1.03) characteristics, showing a major control of climate on the low-level weathering and recycling of the river sediments. However, there are significant differences in the detrital zircon U-Pb age (a significant Mesozoic age peak for the LR but an additional Precambrian peak for the JSR), Nd isotope ratio (−6.2812–8.5830 and −8.1149–10.2411 for the LR and the JSR, respectively) and to a certain extent heavy mineral composition (e.g., for the < 63 μm fraction, a dominance of hornblende and magnetite in the LR, but haematite-limonite in the JSR) in the two river sediments, indicating that source rocks largely control the composition of the river sediments. Some of the major tectono-magmatic events (e.g., crustal growth and cratonisation of the North China Craton, closure of the Paleo-Asian Ocean, subduction and rollback of the Paleo-Pacific plate) occurring in the eastern Songnen Plain are well documented in the JSR sediments but not in the LR, the difference of which is largely regulated by the source rocks in the source area.
Despite growing awareness of the mental health damage caused by air pollution, the epidemiologic evidence on impact of air pollutants on major mental disorders (MDs) remains limited. We aim to explore the impact of various air pollutants on the risk of major MD.
Methods
This prospective study analyzed data from 170 369 participants without depression, anxiety, bipolar disorder, and schizophrenia at baseline. The concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), particulate matter with aerodynamic diameter > 2.5 μm, and ≤ 10 μm (PM2.5–10), nitrogen dioxide (NO2), and nitric oxide (NO) were estimated using land-use regression models. The association between air pollutants and incident MD was investigated by Cox proportional hazard model.
Results
During a median follow-up of 10.6 years, 9 004 participants developed MD. Exposure to air pollution in the highest quartile significantly increased the risk of MD compared with the lowest quartile: PM2.5 (hazard ratio [HR]: 1.16, 95% CI: 1.09–1.23), NO2 (HR: 1.12, 95% CI: 1.05–1.19), and NO (HR: 1.10, 95% CI: 1.03–1.17). Subgroup analysis showed that participants with lower income were more likely to experience MD when exposed to air pollution. We also observed joint effects of socioeconomic status or genetic risk with air pollution on the MD risk. For instance, the HR of individuals with the highest genetic risk and highest quartiles of PM2.5 was 1.63 (95% CI: 1.46–1.81) compared to those with the lowest genetic risk and lowest quartiles of PM2.5.
Conclusions
Our findings highlight the importance of air pollution control in alleviating the burden of MD.
Natural infection by Trichinella sp. has been reported in humans and more than 150 species of animals, especially carnivorous and omnivorous mammals. Although the presence of Trichinella sp. infection in wild boars (Sus scrofa) has been documented worldwide, limited information is known about Trichinella circulation in farmed wild boars in China. This study intends to investigate the prevalence of Trichinella sp. in farmed wild boars in China. Seven hundred and sixty-one (761) muscle samples from farmed wild boars were collected in Jilin Province of China from 2017 to 2020. The diaphragm muscles were examined by artificial digestion method. The overall prevalence of Trichinella in farmed wild boars was 0.53% [95% confidence interval (CI): 0.51–0.55]. The average parasite loading was 0.076 ± 0.025 larvae per gram (lpg), and the highest burden was 0.21 lpg in a wild boar from Fusong city. Trichinella spiralis was the only species identified by multiplex polymerase chain reaction. The 5S rDNA inter-genic spacer region of Trichinella was amplified and sequenced. The results showed that the obtained sequence (GenBank accession number: OQ725583) shared 100% identity with the T. spiralis HLJ isolate (GenBank accession number: MH289505). Since the consumption of farmed wild boars is expected to increase in the future, these findings highlight the significance of developing exclusive guidelines for the processing of slaughtered farmed wild boar meat in China.
This qualitative research study investigates the effectiveness of gamified handicrafts as an inspiration for teenagers to practice recycling and upcycling. The study utilises focus group interviews and thematic analysis to explore the perceptions and experiences of 15 teenagers who participated in an educational programme called Edcraft, which combines gamification and handicrafts to promote sustainable practices among youth. The findings reveal that Edcraft successfully motivates teenagers to engage in recycling and upcycling activities through its gamified approach, which includes challenges, rewards and social interaction. Themes such as ‘social connections are vital’, ‘convenience and rewards are significant motivators’, ‘gamified activities help attract and engage teens’ and ‘environmental knowledge is crucial to prolonging recycling’ emerged from the thematic analysis. The results also highlight the positive impact of Edcraft on teenagers’ attitudes towards the environment and their willingness to adopt sustainable behaviours beyond the programme. The implications of these findings for promoting environmental education and sustainability among teenagers are discussed, and recommendations for future research and practice are provided.
Depression is a significant mental health concern affecting the overall well-being of adolescents and young adults. Recently, the prevalence of depression has increased among young people. Nonetheless, there is little research delving into the longitudinal epidemiology of adolescent depression over time.
Aims
To investigate the longitudinal epidemiology of depression among adolescents and young adults aged 10–24 years.
Method
Our research focused on young people (aged 10–24 years) with depression, using data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019. We explored the age-standardised prevalence, incidence and disability-adjusted life-years (DALYs) of depression in different groups, including various regions, ages, genders and sociodemographic indices, from 1990 to 2019.
Results
The prevalence, incidence and DALYs of depression in young people increased globally between 1990 and 2019. Regionally, higher-income regions like High-Income North America and Australasia recorded rising age-standardised prevalence and incidence rates, whereas low- or middle-income regions mostly saw reductions. Nationally, countries such as Greenland, the USA and Palestine reported the highest age-standardised prevalence and incidence rates in 2019, whereas Qatar witnessed the largest growth over time. The burden disproportionately affected females across age groups and world regions. The most prominent age effect on incidence and prevalence rates was in those aged 20–24 years. The depression burden showed an unfavourable trend in younger cohorts born after 1980, with females reporting a higher cohort risk than males.
Conclusions
Between 1990 and 2019, the general pattern of depression among adolescents varied according to age, gender, time period and generational cohort, across regions and nations.
Mythimna separata (Lepidoptera: Noctuidae) is an omnivorous pest that poses a great threat to food security. Insect antimicrobial peptides (AMPs) are small peptides that are important effector molecules of innate immunity. Here, we investigated the role of the AMP cecropin B in the growth, development, and immunity of M. separata. The gene encoding M. separata cecropin B (MscecropinB) was cloned. The expression of MscecropinB was determined in different developmental stages and tissues of M. separata. It was highest in the prepupal stage, followed by the pupal stage. Among larval stages, the highest expression was observed in the fourth instar. Tissue expression analysis of fourth instar larvae showed that MscecropinB was highly expressed in the fat body and haemolymph. An increase in population density led to upregulation of MscecropinB expression. MscecropinB expression was also upregulated by the infection of third and fourth instar M. separata with Beauveria bassiana or Bacillus thuringiensis (Bt). RNA interference (RNAi) targeting MscecropinB inhibited the emergence rate and fecundity of M. separata, and resulted in an increased sensitivity to B. bassiana and Bt. The mortality of M. separata larvae was significantly higher in pathogen plus RNAi-treated M. separata than in controls treated with pathogens only. Our findings indicate that MscecropinB functions in the eclosion and fecundity of M. separata and plays an important role in resistance to infection by B. bassiana and Bt.
Very metal-poor (VMP, [Fe/H]<-2.0) stars serve as invaluable repositories of insights into the nature and evolution of the first-generation stars formed in the early galaxy. The upcoming China Space Station Telescope (CSST) will provide us with a large amount of spectral data that may contain plenty of VMP stars, and thus it is crucial to determine the stellar atmospheric parameters ($T_{\textrm{eff}}$, $\log$ g, and [Fe/H]) for low-resolution spectra similar to the CSST spectra ($R\sim 200$). This study introduces a novel two-dimensional Convolutional Neural Network (CNN) model, comprised of three convolutional layers and two fully connected layers. The model’s proficiency is assessed in estimating stellar parameters, particularly metallicity, from low-resolution spectra ($R \sim 200$), with a specific focus on enhancing the search for VMP stars within the CSST spectral data. We mainly use 10 008 spectra of VMP stars from LAMOST DR3, and 16 638 spectra of non-VMP stars ([Fe/H]>-2.0) from LAMOST DR8 for the experiments and apply random forest and support vector machine methods to make comparisons. The resolution of all spectra is reduced to $R\sim200$ to match the resolution of the CSST, followed by pre-processing and transformation into two-dimensional spectra for input into the CNN model. The validation and practicality of this model are also tested on the MARCS synthetic spectra. The results show that using the CNN model constructed in this paper, we obtain Mean Absolute Error (MAE) values of 99.40 K for $T_{\textrm{eff}}$, 0.22 dex for $\log$ g, 0.14 dex for [Fe/H], and 0.26 dex for [C/Fe] on the test set. Besides, the CNN model can efficiently identify VMP stars with a precision rate of 94.77%, a recall rate of 93.73%, and an accuracy of 95.70%. This paper powerfully demonstrates the effectiveness of the proposed CNN model in estimating stellar parameters for low-resolution spectra ($R\sim200$) and recognizing VMP stars that are of interest for stellar population and galactic evolution work.
Arazyme, an alkaline metalloprotease, is produced by Serratia proteamaculans, a symbiotic bacterium isolated from the intestinal ecosystem of Nephila clavata. Arazyme is known to play a crucial role in facilitating the digestion process in N. clavata. Recently, there has been increasing interest in exploring invertebrate-associated gut symbionts as a valuable source of novel and biologically active enzymes. Animal husbandry has shown significant interest in this spider-derived bioactive enzyme. This paper aims to provide a comprehensive review of the current understanding and knowledge of arazyme in the context of animal husbandry, offering valuable references for potential applications of this enzyme.
Poor oral health is increasingly recognised as an important comorbidity in people with psychiatric illness. One risk factor is psychotropic-induced dry mouth.
Aims
To perform a systematic review of the severity of dry mouth due to psychotropic drugs in adults (CRD42021239725). Study quality was assessed using the Cochrane risk of bias tool.
Method
We searched the following databases: PubMed, EMBASE, PsycINFO, Cochrane Central Register of Controlled Trials, CINAHL and Web of Science. We included randomised controlled trials (RCTs) measuring the severity of drug-induced hyposalivation and xerostomia.
Results
Eighteen RCTs with 605 participants were included. Severity of drug-induced dry mouth was compared among eight drug classes and/or against placebo. All studies were published 20 to 40 years ago and included tricyclic antidepressants (TCAs), serotonin specific reuptake inhibitors (SSRIs) and other drug classes. Meta-analysis was not feasible owing to design heterogeneity. TCAs caused more severe dry mouth, both objectively and subjectively, than placebo or other drug classes. SSRIs were generally associated with less severe symptoms. However, there was no information on antipsychotics or more recently available antidepressants, and there was minimal information on mood stabilisers. Most studies were on healthy subjects, limiting the generalisability of findings. Only one study measured both objective and subjective dry mouth, which have different clinical implications.
Conclusions
Psychotropic-induced dry mouth is a poorly researched area, and well-designed RCTs of newer psychotropic drugs using standardised objective and subjective measures are indicated. Given the ongoing use of TCAs for treatment-resistant depression, prescribers need to remain vigilant for xerostomia.
We report here the first hundred-watt continuouswave fiber gas laser in H2-filled hollow-core photonic crystal fiber (PCF) by stimulated Raman scattering. The pump source is a homemade narrow-linewidth fiber oscillator with a 3 dB linewidth of 0.15 nm at the maximum output power of 380 W. To efficiently and stably couple several-hundred-watt pump power into the hollow core and seal the gas, a hollow-core fiber end-cap is fabricated and used at the input end. A maximum power of 110 W at 1153 nm is obtained in a 5 m long hollow-core PCF filled with 36 bar H2, and the conversion efficiency of the first Stokes power is around 48.9%. This work paves the way for high-power fiber gas Raman lasers.
Coastal eutrophication and hypoxia remain a persistent environmental crisis despite the great efforts to reduce nutrient loading and mitigate associated environmental damages. Symptoms of this crisis have appeared to spread rapidly, reaching developing countries in Asia with emergences in Southern America and Africa. The pace of changes and the underlying drivers remain not so clear. To address the gap, we review the up-to-date status and mechanisms of eutrophication and hypoxia in global coastal oceans, upon which we examine the trajectories of changes over the 40 years or longer in six model coastal systems with varying socio-economic development statuses and different levels and histories of eutrophication. Although these coastal systems share common features of eutrophication, site-specific characteristics are also substantial, depending on the regional environmental setting and level of social-economic development along with policy implementation and management. Nevertheless, ecosystem recovery generally needs greater reduction in pressures compared to that initiated degradation and becomes less feasible to achieve past norms with a longer time anthropogenic pressures on the ecosystems. While the qualitative causality between drivers and consequences is well established, quantitative attribution of these drivers to eutrophication and hypoxia remains difficult especially when we consider the social economic drivers because the changes in coastal ecosystems are subject to multiple influences and the cause–effect relationship is often non-linear. Such relationships are further complicated by climate changes that have been accelerating over the past few decades. The knowledge gaps that limit our quantitative and mechanistic understanding of the human-coastal ocean nexus are identified, which is essential for science-based policy making. Recognizing lessons from past management practices, we advocate for a better, more efficient indexing system of coastal eutrophication and an advanced regional earth system modeling framework with optimal modules of human dimensions to facilitate the development and evaluation of effective policy and restoration actions.
We presented the first photometric and orbital period investigations for four W Ursae Majoris-type binaries: V473 And, V805 And, LQ Com, and EG CVn. The photometric solutions suggested that V805 And and LQ Com are two total-eclipse contact binaries, while V473 And and EG CVn are partial-eclipse ones. V473 And and LQ Com belong to the A-subtype contact binaries, while V805 And and EG CVn belong to the W subtype. The O’Connell effects found in the light curves of V805 And, LQ Com, and EG CVn can be interpreted as a result of a cool spot on the surface of their less massive and hotter primary components. Based on two different methods, the absolute physical parameters were properly determined. Combining the eclipse timings derived from our observations and survey’s data with those collected from literature, we investigated their orbital period variations. The results show that the orbital periods of V473 And, V805 And, and EG CVn are undergoing a secular decrease/increase superposed a periodic variation, while LQ Com exhibits a possible cyclic period variation with a small amplitude. The secular period changes are caused mainly by the mass transfer between two components, while the cyclic period oscillations may be interpreted as the results of either the light-time effect due to the third body or the cyclic magnetic activity. Finally, we made a statistical investigation for nearly 200 contact binaries with reliable physical parameters. The statistical results suggested that the W-subtype systems are more evolved than the A-subtype ones. Furthermore, the evolutionary direction of A-subtype into W-subtype systems is also discussed. The opposite evolutionary direction seems to be unlikely because it requires an increase of the total mass, the orbital angular momentum, and the temperature differences between two components of a binary system.
A novel concept—the contact-based landing on a mobile platform—is proposed in this paper. An adaptive backstepping controller is designed to deal with the unknown disturbances in the interactive process, and the contact-based landing mission is implemented under the hybrid force/motion control framework. A rotorcraft aerial vehicle system and a ground mobile platform are designed to conduct flight experiments, evaluating the feasibility of the proposed landing scheme and control strategy. To the best of our knowledge, this is the first time a rotorcraft unmanned aerial vehicle has been implemented to conduct a contact-based landing. To improve system autonomy in future applications, vision-based recognition and localization methods are studied, contributing to the detection of a partially occluded cooperative object or at a close range. The proposed recognition algorithms are tested on a ground platform and evaluated in several simulated scenarios, indicating the algorithm’s effectiveness.