We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The development of Maritime Autonomous Surface Ship (MASS) is progressing rapidly within the maritime industry. Degree Two of MASS (MASS-DoA2), balancing human oversight and autonomous efficiency, will likely gain regulatory approval and industry acceptance. MASS-DoA2 possesses different control modes to adapt to various scenarios. However, the control-switching mechanisms among operators at shore control centres, autonomous navigation systems and number of seafarers onboard remain ambiguous, which poses a new risk that may significantly influence navigation safety. This study focuses on MASS-DoA2 and carries out a systematic review of autonomous ship guidelines. A questionnaire was designed based on the review findings, and a survey was carried out among captains and researchers in related fields. The review identified 11 control-switching scenarios with suggested takeover agents and the switching process and outlined the priority relationship between various takeover agents. Finally, a control-switching framework for MASS – DoA2 is proposed. It can serve as a theoretical framework for research on MASS's dynamic degree of autonomy and provide a reference for maritime regulatory authorities in establishing MASS – DoA2 control-switching mechanisms.
Nonlinear compression experiments based on multiple solid thin plates are conducted in an ultra-high peak power Ti:sapphire laser system. The incident laser pulse, with an energy of 80 mJ and a pulse width of 30.2 fs, is compressed to 10.1 fs by a thin-plate based nonlinear compression. Significant small-scale self-focusing is observed as ring structures appear in the near-field of the output pulse at high energy. Numerical simulations based on the experimental setup provide a good explanation for the observed phenomena, offering quantitative predictions of the spectrum, pulse width, dispersion and near- and far-field distributions of the compressed laser pulse.
The poor environmental stability of natural anthocyanin hinders its usefulness in various functional applications. The objectives of the present study were to enhance the environmental stability of anthocyanin extracted from Lycium ruthenicum by mixing it with montmorillonite to form an organic/inorganic hybrid pigment, and then to synthesize allochroic biodegradable composite films by incorporating the hybrid pigment into sodium alginate and test them for potential applications in food testing and packaging. The results of X-ray diffraction, Fourier-transform infrared spectroscopy, and use of the Brunauer–Emmett–Teller method and zeta potential demonstrated that anthocyanin was both adsorbed on the surface and intercalated into the interlayer of montmorillonite via host–guest interaction, and the hybrid pigments obtained allowed good, reversible, acid/base behavior after exposure to HCl and NH3 atmospheres. The composite films containing hybrid pigments had good mechanical properties due to the uniform dispersion of the pigments in a sodium alginate substrate and the formation of hydrogen bonds between them. Interestingly, the composite films also exhibited reversible acidichromism. The as-prepared hybrid pigments in composite films could, therefore, serve simultaneously as a reinforced material and as a smart coloring agent for a polymer substrate.
The objective of this study was to understand and measure epigenetic changes associated with the occurrence of CHDs by utilizing the discordant monozygotic twin model. A unique set of monozygotic twins discordant for double-outlet right ventricles (DORVs) was used for this multiomics study. The cardiac and muscle tissue samples from the twins were subjected to whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and liquid chromatography-tandem mass spectrometry analysis. Sporadic DORV cases and control fetuses were used for validation. Global hypomethylation status was observed in heart tissue samples from the affected twins. Among 36,228 differentially methylated regions (DMRs), 1097 DMRs involving 1039 genes were located in promoter regions. A total of 419 genes, and lncRNA–mRNA pairs involved 30 genes, and 62 proteins were significantly differentially expressed. Multiple omics integrative analysis revealed that five genes, including BGN, COL1A1, COL3A1, FBLN5, and FLAN, and three pathways, including ECM-receptor interaction, focal adhesion and TGF-β signaling pathway, exhibited differences at all three levels. This study demonstrates a multiomics profile of discordant twins and explores the possible mechanism of DORV development. Global hypomethylation might be associated with the risk of CHDs. Specific genes and specific pathways, particularly those involving ECM–receptor interaction, focal adhesion and TGF–β signaling, might be involved in the occurrence of CHDs.
Duyun compound green tea (DCGT) is a healthy beverage with lipid-lowering effect commonly consumed by local people, but its mechanism is not very clear. We evaluated the effect of DCGT treatment on bile acids (BA) metabolism of mice with high-fat diet (HFD) – induced hyperlipidaemia by biochemical indexes and metabolomics and preliminarily determined the potential biomarkers and metabolic pathways of hyperlipidaemia mice treated with DCGT as well as investigated its lipid-lowering mechanism. The results showed that DCGT treatment could reduce HFD – induced gain in weight and improve dyslipidaemia. In addition, a total of ten types of BA were detected, of which seven changed BA metabolites were observed in HFD group mice. After DCGT treatment, glycocholic acid, tauroursodeoxycholic acid and taurochenodeoxycholic acid were significantly down-regulated, while hyodeoxycholic acid, deoxycholic acid and chenodeoxycholic acid were markedly up-regulated. These results demonstrated that DCGT treatment was able to make the BA metabolites in the liver of hyperlipidaemia mice normal and alleviate hyperlipidaemia by regulating the metabolites such as glycocholic acid, tauroursodeoxycholic acid and taurochenodeoxycholic, as well as the BA metabolic pathway and cholesterol metabolic pathway involved.
Recently, the nature of viscoelastic drag-reducing turbulence (DRT), especially the maximum drag reduction (MDR) state, has become a focus of controversy. It has long been regarded as polymer-modulated inertial turbulence (IT), but is challenged by the newly proposed concept of elasto-inertial turbulence (EIT). This study is to repicture DRT in parallel plane channels by introducing dynamics of EIT through statistical, structural and budget analysis for a series of flow regimes from the onset of drag reduction to EIT. Some underlying mechanistic links between DRT and EIT are revealed. Energy conversion between velocity fluctuations and polymers as well as pressure redistribution effects are of particular concern, based on which a new energy self-sustaining process (SSP) of DRT is repictured. The numerical results indicate that at low Reynolds number ($Re$), weak IT flow is replaced by a laminar regime before the barrier of EIT dynamics is established with the increase of elasticity, whereas, at moderate $Re$, EIT-related SSP can get involved and survive from being relaminarized. This further explains the reason why relaminarization phenomenon is observed for low $Re$ while the flow directly enters MDR and EIT at moderate $Re$. Moreover, with the proposed energy picture, the newly discovered phenomenon that streamwise velocity fluctuations lag behind those in the wall-normal direction can be well explained. The repictured SSP certainly justifies the conjecture that IT nature is gradually replaced by that of EIT in DRT with the increase of elasticity.
A hybrid fluorescent pigment composed of fluorescent yellow X-10GFF (FY-10G) and palygorskite (PLG) was prepared by semi-dry grinding. The effects of the physically adsorbed water content and grinding time on the environmental stability of FY-10G/PLG hybrid fluorescent pigments in terms of acid, ethanol and ultraviolet irradiation are discussed in detail. The incorporated FY-10 G molecules are mainly trapped on the external surface and the groove of PLG. Due to the host–guest interaction between PAL and FY-10G, the emission spectrum of the FY-10G/PLG hybrids shifts to a greater wavelength compared with that of FY-10G, but the physically adsorbed water content and grinding time have no effect on the position of the emission spectrum except for its intensity. A larger, physically adsorbed water content and appropriate grinding time may effectively prevent the aggregation and breakage of the bundles of PLG and facilitate FY-10 G molecules to enter into the groove of PAL. This increases the environmental stability of the as-prepared hybrid pigments.
The aim of this study was to investigate risk factors and psychological stress of health-care workers (HCWs) with coronavirus disease 2019 (COVID-19) in a nonfrontline clinical department.
Methods:
Data of 2 source patients and all HCWs with infection risk were obtained in a department in Wuhan from January to February 2020. A questionnaire was designed to evaluate psychological stress of COVID-19 on HCWs.
Results:
The overall infection rate was 4.8% in HCWs. Ten of 25 HCWs who contacted with 2 source patients were diagnosed with confirmed COVID-19 (8/10) and suspected COVID-19 (2/10). Other 2 HCWs were transmitted by other patients or colleagues. Close care behaviors included physical examination (6/12), life nursing (4/12), ward rounds (4/12), endoscopic examination (2/12). Contacts fluctuated from 1 to 24 times and each contact was short (8.1 min ± 5.6 min). HCWs wore surgical masks (11/12), gloves (7/12), and isolation clothing (3/12) when providing medical care. Most HCWs experienced a mild course with 2 asymptomatic infections, taking 9.8 d and 20.9 d to obtain viral shedding and clinical cure, respectively. Psychological stress included worry (58.3%), anxiety (83.3%), depression (58.3%), and insomnia (58.3%).
Conclusions:
Close contact with COVID-19 patients and insufficient protection were key risk factors. Precaution measures and psychological support on COVID-19 is urgently required for HCWs.
Family coaggregation of attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD) and schizophrenia have been presented in previous studies. The shared genetic and environmental factors among psychiatric disorders remain elusive.
Methods
This nationwide population-based study examined familial coaggregation of major psychiatric disorders in first-degree relatives (FDRs) of individuals with ASD. Taiwan's National Health Insurance Research Database was used to identify 26 667 individuals with ASD and 67 998 FDRs of individuals with ASD. The cohort was matched in 1:4 ratio to 271 992 controls. The relative risks (RRs) and 95% confidence intervals (CI) of ADHD, ASD, BD, MDD and schizophrenia were assessed among FDRs of individuals with ASD and ASD with intellectual disability (ASD-ID).
Results
FDRs of individuals with ASD have higher RRs of major psychiatric disorders compared with controls: ASD 17.46 (CI 15.50–19.67), ADHD 3.94 (CI 3.72–4.17), schizophrenia 3.05 (CI 2.74–3.40), BD 2.22 (CI 1.98–2.48) and MDD 1.88 (CI 1.76–2.00). Higher RRs of schizophrenia (4.47, CI 3.95–5.06) and ASD (18.54, CI 16.18–21.23) were observed in FDRs of individuals with both ASD-ID, compared with ASD only.
Conclusions
The risk for major psychiatric disorders was consistently elevated across all types of FDRs of individuals with ASD. FDRs of individuals with ASD-ID are at further higher risk for ASD and schizophrenia. Our results provide leads for future investigation of shared etiologic pathways of ASD, ID and major psychiatric disorders and highlight the importance of mental health care delivered to at-risk families for early diagnoses and interventions.
In order to maintain the no-slip condition and the divergence-free property simultaneously, an iterative scheme of immersed boundary method in the finite element framework is presented. In this method, the Characteristic-based Split scheme is employed to solve the momentum equations and the formulation for the pressure and the extra body force is derived according to the no-slip condition. The extra body force is divided into two divisions, one is in relation to the pressure and the other is irrelevant. Two corresponding independent iterations are set to solve the two sections. The novelty of this method lies in that the correction of the velocity increment is included in the calculation of the extra body force which is relevant to the pressure and the update of the force is incorporated into the iteration of the pressure. Hence, the divergence-free properties and no-slip conditions are ensured concurrently. In addition, the current method is validated with well-known benchmarks.
Universal salt iodisation (USI) has been successfully implemented in China for more than 15 years. Recent evidence suggests that the definition of ‘adequate iodine’ (100–199 µg/l) be revised to ‘sufficient iodine’ (100–299 µg/l) based on the median urinary iodine concentration (MUI) in school-age children. The objective of this study was to determine the prevalence of thyroid dysfunction in populations after long-term salt iodisation and examine whether the definition of adequate iodine can be broadened to sufficient iodine based on the thyroid function in four population groups. A cross-sectional survey was conducted in six provinces in the northern, central and southern regions of China. Four population groups consisting of 657 children, 755 adults, 347 pregnant women and 348 lactating women were recruited. Three spot urinary samples were collected over a 10-d period and blood samples were collected on the 1st day. In the study, among the adults, pregnant women and lactating women, the prevalence rates of elevated thyroglobulin antibody and thyroid microsomal antibody levels were 12·4, 8·5 and 7·8 %, and 12·1, 9·1 and 9·1 %, respectively. Abnormally high thyroid dysfunction prevalence was not observed after more than 15 years of USI in China because the thyroid dysfunction rates were all <5 %. The recommended range should be cautiously broadened from adequate iodine to sufficient iodine according to the MUI of school-age children considering the high levels of hormones and antibodies in the other populations. Adults, particularly pregnant women positive for thyroid antibodies, should be closely monitored.
Sufficient iodine intake by pregnant and lactating women is crucial to their offspring's cognitive development. The aim of the present study was to explore the impact of iodised salt intake on the iodine status of pregnant and lactating women. Thirty towns were selected from 211 towns in the rural areas of Shijiazhuang city using probability proportionate to size sampling in this cross-sectional survey. In each selected town, forty pregnant women and forty lactating women were randomly selected to contribute urine samples to determine iodine content. The median urinary iodine content (UIC) of 1200 pregnant women in all was 146 (interquartile range (IQR) 88–239) μg/l. The median UIC in the first, second and third trimesters were 166 (IQR 92–276) μg/l, 145 (IQR 83–248) μg/l and 134 (IQR 79–221) μg/l, respectively. The median UIC in the first trimester was significantly higher than that in the third trimester (P= 0·04). The median UIC of 1200 lactating women in all was 120 (IQR 66–195) μg/l. Their median UIC in every 4-week block was higher than the WHO criteria except in weeks 25–28 and weeks 33–36 of lactation. Pregnant women's median UIC did not correlate with median salt iodine (MSI) (P= 0·402); however, there was a linear correlation between MSI and the lactating women's median UIC (P= 0·007). Iodised salt failed to provide adequate iodine to pregnant women possibly due to limited intake of iodised salt during pregnancy, though it was found to provide adequate iodine to lactating women in the rural areas of Shijiazhuang city.
The aim of the present study was to evaluate the effects of lutein and lycopene supplementation on carotid artery intima–media thickness (CAIMT) in subjects with subclinical atherosclerosis. A total of 144 subjects aged 45–68 years were recruited from local communities. All the subjects were randomly assigned to receive 20 mg lutein/d (n 48), 20 mg lutein/d+20 mg lycopene/d (n 48) or placebo (n 48) for 12 months. CAIMT was measured using Doppler ultrasonography at baseline and after 12 months, and serum lutein and lycopene concentrations were determined using HPLC. Serum lutein concentrations increased significantly from 0·34 to 1·96 μmol/l in the lutein group (P< 0·001) and from 0·35 to 1·66 μmol/l in the combination group (P< 0·001). Similarly, serum lycopene concentrations increased significantly from 0·18 to 0·71 μmol/l in the combination group at month 12 (P< 0·001), whereas no significant change was observed in the placebo group. The mean values of CAIMT decreased significantly by 0·035 mm (P= 0·042) and 0·073 mm (P< 0·001) in the lutein and combination groups at month 12, respectively. The change in CAIMT was inversely associated with the increase in serum lutein concentrations (P< 0·05) in both the active treatment groups and with that in serum lycopene concentrations (β = − 0·342, P= 0·031) in the combination group. Lutein and lycopene supplementation significantly increased the serum concentrations of lutein and lycopene with a decrease in CAIMT being associated with both concentrations. In addition, the combination of lutein and lycopene supplementation was more effective than lutein alone for protection against the development of CAIMT in Chinese subjects with subclinical atherosclerosis, and further studies are needed to confirm whether synergistic effects of lutein and lycopene exist.
Potassium (K) is an essential nutrient and abundant cation in plant cells. The application of K+ could alleviate abiotic stress. However, it was reported that the alleviation of K+ on salt-stressed plants only happened when K+ concentration was low. Most studies were focused on effects of sodium salts on plants in salty soils, and little information was reported about potassium salts, especially a higher level of potassium in alkaline salts. To explore the effects of K+ in alkaline salts on plant growth, and whether it had a same destructive impact as Na+, we mixed two alkaline sodium salts (ASS) (NaHCO3:Na2CO3 = 9:1) and two alkaline potassium salts (APS) (KHCO3:K2CO3 = 9:1) to treat 10-day-old wheat seedlings. Effects of ASS and APS on growth, photosynthesis, ions absorption and solutes accumulation were compared. Results indicated that effects of potassium salts in soil on plants growth were related to K+ concentration. Both growth and photosynthesis of wheat seedlings decreased, and the reduction was higher in APS treatment than in ASS treatment at 40 mM alkalinity. ASS treatment absorbed Na+, competing with K+ and free Ca2+, and inhibited the absorption of inorganic anions. APS treatments accumulated K+ and reduced the absorption of anions, with no competition with other cations. Both APS and ASS treatments promoted free Mg2+ accumulation and inhibited H2PO4−uptake. The reduction of H2PO4− promoted organic acid synthesis indirectly. Soluble sugar and proline accumulation were also related to the alkaline condition and extra K+ addition. In conclusion, excess potassium ions in soil, especially in alkaline soils, were harmful to plants. APS was another severe salt stress, intensity of which was higher than ASS. The growth and physiological response mechanisms of wheat seedlings to APS were similar to ASS. Both inorganic ions and organic solutes took part in the osmotic adjustment. Differences for APS depended on K+, but ASS on Na+.
The aim of this study was to evaluate the therapeutic effects of osteopontin neutralization treatment on schistosome-induced liver injury in BALB/C mice. We randomly divided 100 BALB/C mice into groups A, B, C, D and group E. Mice in all groups except group A were abdominally infected with schistosomal cercariae to induce a schistosomal hepatopathological model. Mice in group C, D and group E were respectively administered with praziquantel, praziquantel plus colchicine and praziquantel plus neutralizing osteopontin antibody. We extracted mouse liver tissues at 3 and 9 weeks after the ‘stool-eggs-positive’ day, observed liver histopathological changes by haematoxylin-eosin and Masson trichrome staining and detected the expression of osteopontin, alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β1) by immunohistochemistry, RT-PCR and Western blot. We found that praziquantel plus neutralizing osteopontin antibody treatment significantly decreased the granuloma dimension, the percentage of collagen and the expression of osteopontin, α-SMA and TGF-β1 compared to praziquantel plus colchicine treatment in both the acute and chronic stage of schistosomal liver damage (P<0·05). So we believe that the combined regimen of osteopontin immunoneutralization and anti-helminthic treatment can reduce the granulomatous response and liver fibrosis during the schistosomal hepatopathologic course.
A total of 791 microsatellites (SSRs) were isolated from 7055 Panax ginseng expressed sequence tags (ESTs). According to primer design criteria, 68 primer pairs for EST-SSR were designed. Under an appropriate polymerase chain reaction (PCR) system, all EST-SSR primer pairs were screened against genomic DNA of Ji'anchangbo and Fusong'ermaya from Panax ginseng, and 43 EST-SSR primer pairs out of the above 68 resulted in PCR products. Then, all 43 pairs were detected in nine P. ginseng, two Panax quinquefolius and two Acanthopanax senticosus cultivars for polymorphisms, and 26 pairs (60.47%) were found to be polymorphic, accounting for 38.23% of the total number of designed primer pairs. These results demonstrate the possibility of developing EST-SSR markers using P. ginseng ESTs.
Microsatellites or simple sequence repeats (SSRs) are co-dominant molecular markers. When we used fluorescent SSR markers to construct a linkage map for the female heterogametic silkworm (Bombyx mori, ZW), we found that some loci did not segregate in a Mendelian ratio of 1:1 in a backcross population. These loci segregated in a 3:1 ratio of single bands compared with double bands. Further examination of band patterns indicated that three types of SSR bands were present: two homozygotes and one heterozygote. In the beginning, we considered to discard these markers. By scoring male and female F1 individuals, we confirmed that these loci were located on the Z chromosome. Using the sex-linked visible mutation sch (K05) and its wild-type (C108), we constructed an F1 male backcross (BC1M) mapping population. The combination of sch backcross and SSR data enabled us to map the SSR markers to the Z chromosome. By adjusting input parameters based on these data, we were able to use Mapmaker software to construct a linkage map. This strategy takes advantage of co-dominant markers for positional cloning of genes on the Z chromosome. We localized sch to the Z chromosome relative to six SSR markers and one PCR marker, covering a total of 76·1 cM. The sch mutation is an important sex-linked visible mutation widely used in breeding of commercial silkworms (e.g. male silkworm selection rearing). Localization of the sch gene may prove helpful in cloning the gene and developing strains for marker-assisted selection in silkworm breeding.
Carbon nitride powder with an atomic N/C ratio of 1 has been prepared by reaction of cyanuric chloride with sodium metal. X-ray diffraction, Fourier transform infrared spectra, and x-ray photoelectron spectroscopic data provide substantial evidence for a graphite-like sp2-bonded structure composed of building blocks of s-triazine rings bridged by carbon-carbon atoms in the bulk carbon nitride. The electron-microscopy results reveal that the material is spherical particles with an average diameter of 50 nm. The optical properties and thermal stability are also characterized. Based on the experimental results, it is deduced that the structure of as-prepared material carbon nitride has polyether structure.
The distribution of genetic diversity between Oryza sativa L. ssp. indica and O. sativa L. ssp. japonica covering different ecological zones in Yunnan was studied, and specific markers of indica/japonica subspecies, paddy/upland rice and different ecological zones were screened, using 36 microsatellite primers and 113 accessions in the Yunnan landrace rice core collection. The genetic diversity of japonica was higher than that of indica, and the ecological zone with the highest and smallest genetic diversity lay in south-east and north-east Yunnan, respectively. This distribution was consistent at morphological and isozyme levels with studies on the entire Yunnan rice resources and core collection. In addition, the results showed that, among 416 markers, there were six indica/japonica-specific markers, 15 specific markers for paddy/upland rice and three specific markers in different ecological zones. The main conclusions are that the landrace rice core collection in Yunnan genetically represents the entire landrace rice resources in Yunnan, the centre of genetic diversity at DNA level lies in south-east Yunnan, and the DNA differentiation between indica and japonica is small. Furthermore, microsatellite markers were useful for studying the genetic diversity, classification and ecotype of germplasm resources and their core collection.