We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Interlayer sodium ions of montmorillonite were exchanged with hydroxy-bismuth polycations which were prepared from bismuth perchlorate solutions by the addition of NaOH. Assuming the charge density of the silicate layer to be unchanged, the compositions of the polycations involved in the exchange can be estimated from the amount of bismuth taken up by the montmorillonite and from the ignition loss between 110° and 800°C. The derived compositions are near [Bi6(OH)16]2+ irrespective of the ratio of OH:Bi in the perchlorate solution. The basal spacing of the hydroxy-bismuth montmorillonites is about 16 Å at 110°C, which corresponds to that of hydroxy-chromium montmorillonite having a high surface area of about 250 m2/g. The surface areas of the hydroxy-bismuth montmorillonites, however, are less than 80 m2/g.
We consider the homology theory of étale groupoids introduced by Crainic and Moerdijk [A homology theory for étale groupoids. J. Reine Angew. Math.521 (2000), 25–46], with particular interest to groupoids arising from topological dynamical systems. We prove a Künneth formula for products of groupoids and a Poincaré-duality type result for principal groupoids whose orbits are copies of an Euclidean space. We conclude with a few example computations for systems associated to nilpotent groups such as self-similar actions, and we generalize previous homological calculations by Burke and Putnam for systems which are analogues of solenoids arising from algebraic numbers. For the latter systems, we prove the HK conjecture, even when the resulting groupoid is not ample.
We establish an equivalence between two approaches to quantization of irreducible symmetric spaces of compact type within the framework of quasi-coactions, one based on the Enriquez–Etingof cyclotomic Knizhnik–Zamolodchikov (KZ) equations and the other on the Letzter–Kolb coideals. This equivalence can be upgraded to that of ribbon braided quasi-coactions, and then the associated reflection operators (K-matrices) become a tangible invariant of the quantization. As an application we obtain a Kohno–Drinfeld type theorem on type
$\mathrm {B}$
braid group representations defined by the monodromy of KZ-equations and by the Balagović–Kolb universal K-matrices. The cases of Hermitian and non-Hermitian symmetric spaces are significantly different. In particular, in the latter case a quasi-coaction is essentially unique, while in the former we show that there is a one-parameter family of mutually nonequivalent quasi-coactions.
Given an ample groupoid, we construct a spectral sequence with groupoid homology with integer coefficients on the second sheet, converging to the K-groups of the (reduced) groupoid C
$^*$
-algebra, provided the groupoid has torsion-free stabilizers and satisfies a strong form of the Baum–Connes conjecture. The construction is based on the triangulated category approach to the Baum–Connes conjecture developed by Meyer and Nest. We also present a few applications to topological dynamics and discuss the HK conjecture of Matui.
We prove two results on the tube algebras of rigid C*-tensor categories. The first is that the tube algebra of the representation category of a compact quantum group G is a full corner of the Drinfeld double of G. As an application, we obtain some information on the structure of the tube algebras of the Temperley–Lieb categories 𝒯ℒ(d) for d > 2. The second result is that the tube algebras of weakly Morita equivalent C*-tensor categories are strongly Morita equivalent. The corresponding linking algebra is described as the tube algebra of the 2-category defining the Morita context.
Temporal structural changes of protoplanetary disks surrounding T Tauri stars (TTSs) can cause magnitude variations of TTSs. On the other hand, variability is also expected due to cool spots and/or hot spots on the surface of the star, thus it is important to distinguish the causes of the observed variability. Our sample consists of 23 TTSs (22 classical T Tauri stars, 1 weak-lined T Tauri star) and 4 Herbig Ae/Be stars. The observations were performed over a period of about 3 months in the V, J, and KS band, simultaneously. We detected variability for all stars in the three bands (>0.05 mag in V, >0.09 mag in J, >0.09 mag in KS). Color-magnitude relations obtained between V, J, and KS bands suggest that stellar spots are not the only cause of variability for most of our targets. In addition, the data implies that six stellar systems contain larger grains than in the interstellar medium if the variability is only caused by extinction due to circumstellar matter.
We have carried out multi-epoch VLBI observations of the H2O maser sources associated with young stellar objects (YSOs) in nearby molecular clouds with VERA (VLBI Exploration of Radio Astrometry), which is a newly constructed VLBI network in Japan (Kobayashi et al. 2003). The main goal of our study is to measure the absolute proper motions and distances to nearby molecular clouds within 1 kpc from the Sun, to reveal their 3-dimensional structures and dynamical properties. Using the VERA dual-beam receiving system (Honma et al. 2003), we have carried out phase-referencing VLBI observations and measured annual parallaxes and absolute proper motions of the H2O maser features with respect to the extragalactic radio sources. We have successfully detected the annual parallax of one of the H2O maser features in Orion KL to be 2.29±0.10 mas, corresponding to the distance of 437±19 pc from the Sun (Hirota et al. 2007). In addition, the annual parallax of SVS13 in NGC 1333 is also determined to be4.10±0.17 mas, corresponding to the distance of 244±10 pc from the Sun, although the life time of the maser features are only 6 months. The absolute proper motions of the H2O maser features associated with Orion KL and NGC 1333 are derived, possibly indicating the outflow motions from the YSOs as well as the systemic motions of the powering sources.
A large quantity of the jellyfish, Aurelia aurita, invade cooling water systems and cause serious problems at several electric power stations in Japan. In the present study, we examined intra—species genetic variation of A. aurita in Wakasa Bay, Japan in order to estimate the original polyp habitat of the adult medusae invading electric power stations. Total DNA was extracted from the adult medusae and the wild polyps, and polymerase chain reaction (PCR) was performed using the specific primers for amplification of nuclear internal transcribed spacer one (ITS-1) and mitochondrial cytochrome oxidase c subunit 1 (CO1). Then the DNA sequences of the PCR products were compared. The results showed genetic polymorphism of A. aurita in Wakasa Bay and locally specific frequency of each haplotype. The haplotype frequency, especially in CO1, of the adults collected at one of the power stations in Wakasa Bay was similar to that of the polyp colonies at harbours in the embayed area, not at another harbour in the western entrance of the bay. The polymorphic analysis is, therefore, thought to be useful for the determination of original polyp habitat as source of the adult medusae in relatively limited regions such as Wakasa Bay.
We observed the Cygnus Loop with Gas Scintillation Proportional Counter (GSPC) on board Tenma satellite. GSPC has an energy resolution two times better than that of a proportional counter (PC). Fig. 1 shows the spectrum with the crosses being the pulse height data with ± 1σ statistics. Superposed upon the data point is the best fit model spectra folded through the detector response.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.