We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Perovskite-like mixed metal ruthenates are of interest owing to their varied electronic and magnetic properties, which are heavily dependent on the ordering of the transition metals. We report the synthesis and structural characterization of the first 1:2 ordered perovskite ruthenate, Sr3CaRu2O9. The structure was determined from a combination of powder X-ray, electron and neutron diffraction data and is characterized by a 1:2 ordering of Ca2+ and Ru5+ over the sixcoordinate B-sites of the perovskite lattice. Sr3CaRu2O9 is the first example of this structure-type to include a majority metal with d electrons (Ru(V), d3). The relationship of this material to the K2NiF4-type Sr1.5Ca0.5RuO4 (i.e., Sr3CaRu2O8) highlights the dramatic effects of the ruthenium valence on the resultant structure. Remarkably, these two structures can be quantitatively interconverted by the appropriate choice of reaction temperature and atmosphere.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.