We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Eastern population of the Lesser White-fronted Goose (EPLWFG) Anser erythropus is shared between Russia and China. The summer range of the EPLWFG has been recognised as a continuous area extending from the Olenyok River in the west to the Anadyr River in the east and northwards from 64°N. The aim of this study was to provide information on breeding behaviour; nest-sites, nesting habitats, and time of nesting; nesting success; timing of summer movements including moult migration; moult timing, duration, and moulting habitats; site fidelity; and the effect of human presence. To accomplish this, we combined the results from field surveys with GPS/GSM tracking. A total of 30 summer tracks from 19 individual EPLWFG were analysed. We estimated breeding propensity in 93.8% of adult LWFG, and this factor did not seem to depend on breeding success in the previous season. Reproductive success was 13.3% in all nesting attempts. Non-breeders arrived three-week later and departed a week earlier. The EPLWFG are highly mobile during the summer. The core moulting site for the entire EPLWFG was discovered by this study and is located along the lower reaches of the San-Yuryakh and Kyuanekhtyakh rivers flowing towards the Omulyakhskaya Bay of the East Siberian Sea. The EPLWFG flightless period was 24.8 ± 2.8 days. A part of failured EPLWFG (43.7 %) migrated back to its early summer breeding/staging site after having completed moult. The strong site fidelity (100%) of adult birds to both nesting and moulting sites promotes the formation of local breeding populations, which could be considered conservation units if genetic studies support this differentiation. The EPLWFG selects the remotest and least human-accessible area for their remigial moult, and the main site was discovered with the help of tracking.
We present the generation of high-repetition-rate strong-field terahertz (THz) pulses from a thin 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS) organic crystal pumped by an ytterbium-doped yttrium aluminum garnet laser. The generated THz pulse energy reaches 932.8 nJ at 1 kHz repetition rate, with a conversion efficiency of 0.19% and a peak electric field of 819 kV/cm. At a repetition rate of 10 kHz, it is able to maintain a peak electric field of 236 kV/cm and an average THz power of 0.77 mW. The high-repetition-rate, strong-field THz source provides a convenient tool for the study of THz matter manipulation and THz spectroscopy.
Cavity evolution in granular media is crucial in explosion-driven gas–particle flows, particularly in many engineering applications. In this study, a theoretical model was first proposed to describe the cavity evolution in granular media by extending the classical Rayleigh–Plesset model. A closed equation set comprising the radius, pressure and gas leak-off velocity equations was built by considering the gas expansion and non-Darcy gas-penetration effects. Both centrally symmetric and non-centrally symmetric cases of gas injection into granular media were investigated. Especially for modelling the non-symmetric scenario, the radius and gas leak-off velocity equations were proposed in each radial direction with angle $\theta$, and then the pressure equation was built up based on the integral gas leak-off along the cavity outline. Through non-dimensionalizing the theoretical equations, four key dimensionless numbers $\varPi_1,\ \varPi_4$ were obtained to characterize the response time of cavity expansion and the intensity of non-Darcy effects for both cases. This allowed us to determine a scaling law of effective cavity radius $R_{eff}^*=\sqrt {2\varPi _2/(7{\rm \pi} )}t^{*1/2}$ and the critical time $t_{cr}^*=\sqrt {12.5/\varPi _1}$ for two-dimensional cavity evolution. Additionally, the necessity of incorporating non-Darcy effects was ascertained under conditions of $\varPi _4>400$. The findings demonstrate that the proposed theoretical equations effectively predict the cavity evolution results under various operational conditions ($0.7<\varPi _1<7\times 10^2, 3<\varPi _4<1.1\times 10^3$), as validated by refined Euler–Lagrange numerical simulations.
In this paper, we have experimentally demonstrated a high-power and high-brightness narrow-linewidth fiber amplifier seeded by an optimized fiber oscillator. In order to improve the temporal stability, the fiber oscillator consists of a composite fiber Bragg grating-based cavity with an external feedback structure. By optimizing the forward and backward pumping ratio, the nonlinear effects and stimulated Raman scattering-induced mode distortion of the fiber amplifier are suppressed comprehensively, accompanied with the simultaneous improvement of beam quality and output power. The laser brightness is enhanced further by raising the threshold of transverse mode instability by approximately 1.0 kW by coiling the gain fiber with a novel curvature shape. Finally, a 6 kW narrow-linewidth laser is achieved with beam quality (M2) of approximately 1.4. The laser brightness doubled compared to the results before optimization. To the best of our knowledge, it is the highest brightness narrow-linewidth fiber laser based on a one-stage master oscillator power amplification structure.
The comorbidity between schizophrenia (SCZ) and inflammatory bowel disease (IBD) observed in epidemiological studies is partially attributed to genetic overlap, but the magnitude of shared genetic components and the causality relationship between them remains unclear.
Methods
By leveraging large-scale genome-wide association study (GWAS) summary statistics for SCZ, IBD, ulcerative colitis (UC), and Crohn's disease (CD), we conducted a comprehensive genetic pleiotropic analysis to uncover shared loci, genes, or biological processes between SCZ and each of IBD, UC, and CD, independently. Univariable and multivariable Mendelian randomization (MR) analyses were applied to assess the causality across these two disorders.
Results
SCZ genetically correlated with IBD (rg = 0.14, p = 3.65 × 10−9), UC (rg = 0.15, p = 4.88 × 10−8), and CD (rg = 0.12, p = 2.27 × 10−6), all surpassed the Bonferroni correction. Cross-trait meta-analysis identified 64, 52, and 66 significantly independent loci associated with SCZ and IBD, UC, and CD, respectively. Follow-up gene-based analysis found 11 novel pleiotropic genes (KAT5, RABEP1, ELP5, CSNK1G1, etc) in all joint phenotypes. Co-expression and pathway enrichment analysis illustrated those novel genes were mainly involved in core immune-related signal transduction and cerebral disorder-related pathways. In univariable MR, genetic predisposition to SCZ was associated with an increased risk of IBD (OR 1.11, 95% CI 1.07–1.15, p = 1.85 × 10−6). Multivariable MR indicated a causal effect of genetic liability to SCZ on IBD risk independent of Actinobacteria (OR 1.11, 95% CI 1.06–1.16, p = 1.34 × 10−6) or BMI (OR 1.11, 95% CI 1.04–1.18, p = 1.84 × 10−3).
Conclusions
We confirmed a shared genetic basis, pleiotropic loci/genes, and causal relationship between SCZ and IBD, providing novel insights into the biological mechanism and therapeutic targets underlying these two disorders.
Few population studies have sufficient follow-up period to examine early-life exposures with later life diseases. A critical question is whether involuntary exposure to tobacco smoke from conception to adulthood increases the risk of cardiometabolic diseases (CMD) in midlife. In the Collaborative Perinatal Project, serum-validated maternal smoking during pregnancy (MSP) was assessed in the 1960s. At a mean age of 39 years, 1623 offspring were followed-up for the age at first physician-diagnoses of any CMDs, including diabetes, heart disease, hypertension, or hyperlipidemia. Detailed information on their exposure to environmental tobacco smoke (ETS) in childhood and adolescence was collected with a validated questionnaire. Cox regression was used to examine associations of in utero exposure to MSP and exposure to ETS from birth to 18 years with lifetime incidence of CMD, adjusting for potential confounders. We calculated midlife cumulative incidences of hyperlipidemia (25.2%), hypertension (14.9%), diabetes (3.9%), and heart disease (1.5%). Lifetime risk of hypertension increased by the 2nd -trimester exposure to MSP (adjusted hazard ratio: 1.29, 95% confidence interval: 1.01–1.65), ETS in childhood (1.11, 0.99–1.23) and adolescence (1.22, 1.04–1.44). Lifetime risk of diabetes increased by joint exposures to MSP and ETS in childhood (1.23, 1.01–1.50) or adolescence (1.47, 1.02–2.10). These associations were stronger in males than females, in never-daily smokers than lifetime ever smokers. In conclusion, early-life involuntary exposure to tobacco smoke increases midlife risk of hypertension and diabetes in midlife.
As an effective drag reduction and thermal protection technology, the opposing jet can guarantee the flight safety of the hypersonic vehicle. In this paper, the jet mode transition is realised by controlling the total jet pressure ratio value (PR) with a function. The jet mode transition from the long penetration mode (LPM) to the short penetration mode (SPM) uses an increasing function. However, the jet mode transition from SPM to LPM uses a decreasing function. The flow field reconstruction process of a two-dimensional axisymmetric blunt body model in the hypersonic flow is studied when the jet mode transition between SPM and LPM changes into each other. The flow field structures and wall parameters of the LPM and SPM transition processes are obtained. The results indicate that the drag and Stanton number both decrease in the transition stage from LPM to SPM, and this is beneficial for the improvement of the drag reduction and thermal protection effect. The peak values of drag and Stanton number fall by 36.39% and 46.40%, respectively. When the jet mode transforms from SPM to LPM, the Stanton number increases, and the drag force first increases and then decreases. However, the final drag reduction effect is not obvious. With the increase in the change rate of the total pressure ratio of the two jet transformation modes, the jet mode transition time is advanced, and the flow field changes more violently.
We report here the first hundred-watt continuouswave fiber gas laser in H2-filled hollow-core photonic crystal fiber (PCF) by stimulated Raman scattering. The pump source is a homemade narrow-linewidth fiber oscillator with a 3 dB linewidth of 0.15 nm at the maximum output power of 380 W. To efficiently and stably couple several-hundred-watt pump power into the hollow core and seal the gas, a hollow-core fiber end-cap is fabricated and used at the input end. A maximum power of 110 W at 1153 nm is obtained in a 5 m long hollow-core PCF filled with 36 bar H2, and the conversion efficiency of the first Stokes power is around 48.9%. This work paves the way for high-power fiber gas Raman lasers.
Electromagnetic simulation software has become an important tool for antenna design. However, high-fidelity simulation of wideband or ultra-wideband antennas is very expensive. Therefore, antenna optimization design by using an electromagnetic solver may be limited due to its high computational cost. This problem can be alleviated by the utilization of fast and accurate surrogate models. Unfortunately, conventional surrogate models for antenna design are usually prohibitive because training data acquisition is time-consuming. In order to solve the problem, a modeling method named progressive Gaussian process (PGP) is proposed in this study. Specially, when a Gaussian process (GP) is trained, test sample with the largest predictive variance is inputted into an electromagnetic solver to simulate its results. After that, the test sample is added to the training set to train the GP progressively. The process can incrementally increase some important trusted training data and improve the model generalization performance. Based on the proposed PGP, two monopole antennas are optimized. The optimization results show effectiveness and efficiency of the method.
Reconstructing the history of elite communication in ancient China benefits from additional archaeological evidence. We combine textual analysis with new human stable carbon and nitrogen isotope data from two Chu burials in the Jingzhou area to reveal significant dietary differences among Chu nobles of the middle Warring States period (c. 350 BC). This research provides important new information on the close interaction between the aristocratic families of the Qin and Chu.
No relevant studies have yet been conducted to explore which measurement can best predict the survival time of patients with cancer cachexia. This study aimed to identify an anthropometric measurement that could predict the 1-year survival of patients with cancer cachexia. We conducted a nested case–control study using data from a multicentre clinical investigation of cancer from 2013 to 2020. Cachexia was defined using the Fearon criteria. A total of 262 patients who survived less than 1 year and 262 patients who survived more than 1 year were included in this study. Six candidate variables were selected based on clinical experience and previous studies. Five variables, BMI, mid-arm circumference, mid-arm muscle circumference, calf circumference and triceps skin fold (TSF), were selected for inclusion in the multivariable model. In the conditional logistic regression analysis, TSF (P = 0·014) was identified as a significant independent protective factor. A similar result was observed in all patients with cancer cachexia (n 3084). In addition, a significantly stronger positive association between TSF and the 1-year survival of patients with cancer cachexia was observed in participants aged > 65 years (OR: 0·94; 95 % CI 0·89, 0·99) than in those aged ≤ 65 years (OR: 0·96; 95 % CI 0·93, 0·99; Pinteraction = 0·013) and in participants with no chronic disease (OR: 0·92; 95 % CI 0·87, 0·97) than in those with chronic disease (OR: 0·97; 95 % CI 0·94, 1·00; Pinteraction = 0·049). According to this study, TSF might be a good anthropometric measurement for predicting 1-year survival in patients with cancer cachexia.
Ship domain is an important theory in ship collision avoidance and an effective collision detection method. First, several classical ship domain models are used in experiments. The results show that the alarm rate is too high in busy waters, leading to greatly reduced practicality of the model. Potential collision risk cannot be detected effectively, especially for a ship with restricted manoeuvrability, which is usually regarded as an overtaken ship due to its navigation characteristics. Therefore, it is necessary to fully consider the interference of other ships to ships with limited manoeuvrability in an encounter situation. A novel ship domain model for ships with restricted manoeuvrability in busy waters is proposed. Considering the navigation characteristics of a ship with restricted manoeuvrability and the influence of the ship–ship effect, an algorithm to determine the boundary of the ship domain model is given by force and moment equations. AIS trajectory data of the North Channel of the Yangtze River Estuary are used to perform a comparative experiment, and four classical ship domain models are employed to perform comparative experiments. The results show that the alarm rates of the novel ship domain model are 7⋅608%, 15⋅131%, 55⋅785% and 7⋅608% lower than those of the other four classical models, and this outcome can effectively reduce the high false alarm rate produced by other models in this environment.
In this paper, the generation of relativistic electron mirrors (REMs) and the reflection of an ultra-short laser off this mirrors are discussed, applying two-dimensional particle-in-cell (2D-PIC) simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapidly expanding. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads the resonance between laser and REM. The reflected radiation near this interval and the corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, certain part of the reflected field could be selectively amplified or depressed, leading to the selectively adjusting of the corresponding spectra.
Folate status for women during early pregnancy has been investigated, but data for women during mid-pregnancy, late pregnancy or lactation are sparse or lacking. Between May and July 2014, we conducted a cross-sectional study in 1211 pregnant and lactating women from three representative regions in China. Approximately 135 women were enrolled in each stratum by physiological periods (mid-pregnancy, late pregnancy or lactation) and regions (south, central or north). Plasma folate concentrations were measured by microbiological assay. The adjusted medians of folate concentration decreased from 28·8 (interquartile range (IQR) 19·9, 38·2) nmol/l in mid-pregnancy to 18·6 (IQR 13·2, 26·4) nmol/l in late pregnancy, and to 17·0 (IQR 12·3, 22·5) nmol/l in lactation (Pfor trend < 0·001). Overall, lower folate concentrations were more likely to be observed in women residing in the northern region, with younger age, higher pre-pregnancy BMI, lower education or multiparity, and in lactating women who had undergone a Caesarean delivery or who were breastfeeding exclusively. In total, 380 (31·4 %) women had a suboptimal folate status (folate concentration <13·5 nmol/l). Women in late pregnancy and lactating, residing in the northern region, having multiparity and low education level had a higher risk of suboptimal folate status, while those with older age had a lower risk. In conclusion, maternal plasma folate concentrations decreased as pregnancy progressed, and were influenced by geographic region and maternal socio-demographic characteristics. Future studies are warranted to assess the necessity of folic acid supplementation during later pregnancy and lactation especially for women at a higher risk of folate depletion.
The aim of this study was to investigate risk factors and psychological stress of health-care workers (HCWs) with coronavirus disease 2019 (COVID-19) in a nonfrontline clinical department.
Methods:
Data of 2 source patients and all HCWs with infection risk were obtained in a department in Wuhan from January to February 2020. A questionnaire was designed to evaluate psychological stress of COVID-19 on HCWs.
Results:
The overall infection rate was 4.8% in HCWs. Ten of 25 HCWs who contacted with 2 source patients were diagnosed with confirmed COVID-19 (8/10) and suspected COVID-19 (2/10). Other 2 HCWs were transmitted by other patients or colleagues. Close care behaviors included physical examination (6/12), life nursing (4/12), ward rounds (4/12), endoscopic examination (2/12). Contacts fluctuated from 1 to 24 times and each contact was short (8.1 min ± 5.6 min). HCWs wore surgical masks (11/12), gloves (7/12), and isolation clothing (3/12) when providing medical care. Most HCWs experienced a mild course with 2 asymptomatic infections, taking 9.8 d and 20.9 d to obtain viral shedding and clinical cure, respectively. Psychological stress included worry (58.3%), anxiety (83.3%), depression (58.3%), and insomnia (58.3%).
Conclusions:
Close contact with COVID-19 patients and insufficient protection were key risk factors. Precaution measures and psychological support on COVID-19 is urgently required for HCWs.
The accurate prediction of turbulent mixing induced by Rayleigh–Taylor (R–T), Richtmyer–Meshkov (R–M) and Kelvin–Helmholtz (K–H) instabilities is very important in understanding natural phenomena and improving engineering applications. In applications, the prediction of mixing with the Reynolds-averaged Navier–Stokes (RANS) equation remains the most widely used method. The RANS method involves two aspects, i.e. physical modelling and model coefficients. Generally, the latter is determined empirically; thus, there is a lack of universality. In this paper, inspired by the well-known Reynolds decomposition, we propose a methodology to determine the model coefficients with the following three steps: (i) preset a set of analytical RANS solutions by fully using the knowledge of mixing evolutions; (ii) simplify the differential RANS equations to algebraic equations by imposing the preset solutions to RANS equations; (iii) solve the algebraic equations approximately to give the values of the entire model coefficients. The specific application of this methodology in the widely used K–L mixing model shows that, using the same set of model coefficients determined from the current methodology, the K–L model successfully predicts the mixing evolutions in terms of different physical quantities (e.g. temporal scalings and spatial profiles), density ratios and problems (e.g. R–T, R–M, K–H and reshocked R–M mixings). It is possible to extend this methodology to other turbulence models characterised with self-similar evolutions, such as K-$\epsilon$ mixing models.
The ablation and acceleration of diamond-like high-density carbon foils irradiated by thermal X-ray radiations are investigated with radiation hydrodynamics simulations. The time-dependent front of the ablation wave is given numerically for radiation temperatures in the range of 100–300 eV. The mass ablation rates and ablation pressures can be derived or implied from the coordinates of ablation fronts, which agree well with reported experiment results of high-density carbon with radiation temperatures Trad in the range of 160–260 eV. It is also found that the $T_{{\rm rad}}^3$ scaling law for ablation rates does not apply to Trad above 260 eV. The trajectories of targets and hydrodynamic efficiencies for different target thicknesses can be derived from the coordinates of ablation fronts using a rocket model and the results agree well with simulations. The peak hydrodynamic efficiencies of the acceleration process are investigated for different foil thicknesses and radiation temperatures. Higher radiation temperatures and target thicknesses result in higher hydrodynamic efficiencies. The simulation results are useful for the design of fusion capsules.
Although it is crucial to improve the treatment status of people with severe mental illness (SMI), it is still unknown whether and how socioeconomic development influences their treatment status.
Aims
To explore the change in treatment status in people with SMI from 1994 to 2015 in rural China and to examine the factors influencing treatment status in those with SMI.
Method
Two mental health surveys using identical methods and ICD-10 were conducted in 1994 and 2015 (population ≥15 years old, n = 152 776) in the same six townships of Xinjin County, Chengdu, China.
Results
Compared with 1994, individuals with SMI in 2015 had significantly higher rates of poor family economic status, fewer family caregivers, longer duration of illness, later age at first onset and poor mental status. Participants in 2015 had significantly higher rates of never being treated, taking antipsychotic drugs and ever being admitted to hospital, and lower rates of using traditional Chinese medicine or being treated by traditional/spiritual healers. The factors strongly associated with never being treated included worse mental status (symptoms/social functioning), older age, having no family caregivers and poor family economic status.
Conclusions
Socioeconomic development influences the treatment status of people with SMI in contemporary rural China. Relative poverty, having no family caregivers and older age are important factors associated with a worse treatment status. Culture-specific, community-based interventions and targeted poverty-alleviation programmes should be developed to improve the early identification, treatment and recovery of individuals with SMI in rural China.
In this paper, a novel method for autonomous navigation for an extra-terrestrial body landing mission is proposed. Based on state-of-the-art crater detection and matching algorithms, a crater edge-based navigation method is formulated, in which solar illumination direction is adopted as a complementary optical cue to aid crater edge-based navigation when only one crater is available. To improve the pose estimation accuracy, a distributed Extended Kalman Filter (EKF) is developed to encapsulate the crater edge-based estimation approach. Finally, the effectiveness of proposed approach is validated by Monte Carlo simulations using a specifically designed planetary landing simulation toolbox.