We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In recent years capnography has gained a foothold in the medical field and is fast becoming a standard of care in anaesthesiology and critical care medicine. In addition, newer applications have emerged which have expanded the utility of capnographs in a number of medical disciplines. This new edition of the definitive text on capnography reviews every aspect of this valuable diagnostic technique. An introductory section summarises the basic physiology of carbon dioxide generation and transport in the body. A technical section describes how the instruments work, and a comprehensive clinical section reviews the use of capnography to diagnose a wide range of clinical disorders. Edited by the world experts in the technique, and with over 40 specialist contributors, Capnography, second edition, is the most comprehensive review available on the application of capnography in health care.
Capnography can provide important clues concerning the acid-base status of patients. Arterial blood gas analysis is essential to properly evaluate the acid-base status, and diagnose and treat underlying disorders. Acids and bases are constantly formed in the body as by-products of metabolism, and are carefully regulated. Buffering mechanisms include intracellular and extracellular chemical buffers, regulation of CO2 by the respiratory and central nervous systems (CNS), and control of bicarbonate by the kidney. Capillary blood samples can be used, particularly in children, to measure arterial blood gases (ABGs). Loop and thiazide diuretics can incite a metabolic alkalosis, while carbonic anhydrase inhibitors can cause a metabolic acidosis. Overdoses of drugs can produce mixed acid-base disorders, such as the combined metabolic acidosis and respiratory alkalosis from a salicylate overdose. Simple acid-base disorders involve a primary abnormality in either metabolism or respiration that produces a secondary change, or compensatory response, in the other component.
Since gas exchange is a primordial function of the lungs and the conductive airways, respiratory assessment is of paramount importance. Capnography has been utilized in surgical patients for over three decades to confirm tracheal intubation and assess ventilation. Nitrogen washout provides an estimate of functional residual capacity, total lung volume, deadspace volume, and alveolar volume. Clinicians typically utilize exhaled CO2 concentration against time during a respiratory cycle. A number of applications are available in and out of the operating room. Capnography can be used as a continuous monitor of alveolar ventilation in patients with lung disease or hemodynamic instability. Mainstream capnometry appears to provide more accurate PETCO2 than conventional sidestream capnometry during spontaneous breathing in non-intubated patients. In the opinion of some investigators, the technology should be employed in all cases requiring sedation in or out of the operating room.