We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recent changes to US research funding are having far-reaching consequences that imperil the integrity of science and the provision of care to vulnerable populations. Resisting these changes, the BJPsych Portfolio reaffirms its commitment to publishing mental science and advancing psychiatric knowledge that improves the mental health of one and all.
We assessed the impact of metagenomic next-generation sequencing (mNGS) on patient care using previously established criteria. Among 37 patients receiving mNGS testing, 16% showed results that had a positive clinical impact. While mNGS results may offer valuable supplementary information, results should be interpreted within the broader clinical context and evaluation.
Empowering the Participant Voice (EPV) is an NCATS-funded six-CTSA collaboration to develop, demonstrate, and disseminate a low-cost infrastructure for collecting timely feedback from research participants, fostering trust, and providing data for improving clinical translational research. EPV leverages the validated Research Participant Perception Survey (RPPS) and the popular REDCap electronic data-capture platform. This report describes the development of infrastructure designed to overcome identified institutional barriers to routinely collecting participant feedback using RPPS and demonstration use cases. Sites engaged local stakeholders iteratively, incorporating feedback about anticipated value and potential concerns into project design. The team defined common standards and operations, developed software, and produced a detailed planning and implementation Guide. By May 2023, 2,575 participants diverse in age, race, ethnicity, and sex had responded to approximately 13,850 survey invitations (18.6%); 29% of responses included free-text comments. EPV infrastructure enabled sites to routinely access local and multi-site research participant experience data on an interactive analytics dashboard. The EPV learning collaborative continues to test initiatives to improve survey reach and optimize infrastructure and process. Broad uptake of EPV will expand the evidence base, enable hypothesis generation, and drive research-on-research locally and nationally to enhance the clinical research enterprise.
In 2016, the National Center for Advancing Translational Science launched the Trial Innovation Network (TIN) to address barriers to efficient and informative multicenter trials. The TIN provides a national platform, working in partnership with 60+ Clinical and Translational Science Award (CTSA) hubs across the country to support the design and conduct of successful multicenter trials. A dedicated Hub Liaison Team (HLT) was established within each CTSA to facilitate connection between the hubs and the newly launched Trial and Recruitment Innovation Centers. Each HLT serves as an expert intermediary, connecting CTSA Hub investigators with TIN support, and connecting TIN research teams with potential multicenter trial site investigators. The cross-consortium Liaison Team network was developed during the first TIN funding cycle, and it is now a mature national network at the cutting edge of team science in clinical and translational research. The CTSA-based HLT structures and the external network structure have been developed in collaborative and iterative ways, with methods for shared learning and continuous process improvement. In this paper, we review the structure, function, and development of the Liaison Team network, discuss lessons learned during the first TIN funding cycle, and outline a path toward further network maturity.
Improving the quality and conduct of multi-center clinical trials is essential to the generation of generalizable knowledge about the safety and efficacy of healthcare treatments. Despite significant effort and expense, many clinical trials are unsuccessful. The National Center for Advancing Translational Science launched the Trial Innovation Network to address critical roadblocks in multi-center trials by leveraging existing infrastructure and developing operational innovations. We provide an overview of the roadblocks that led to opportunities for operational innovation, our work to develop, define, and map innovations across the network, and how we implemented and disseminated mature innovations.
New technologies and disruptions related to Coronavirus disease-2019 have led to expansion of decentralized approaches to clinical trials. Remote tools and methods hold promise for increasing trial efficiency and reducing burdens and barriers by facilitating participation outside of traditional clinical settings and taking studies directly to participants. The Trial Innovation Network, established in 2016 by the National Center for Advancing Clinical and Translational Science to address critical roadblocks in clinical research and accelerate the translational research process, has consulted on over 400 research study proposals to date. Its recommendations for decentralized approaches have included eConsent, participant-informed study design, remote intervention, study task reminders, social media recruitment, and return of results for participants. Some clinical trial elements have worked well when decentralized, while others, including remote recruitment and patient monitoring, need further refinement and assessment to determine their value. Partially decentralized, or “hybrid” trials, offer a first step to optimizing remote methods. Decentralized processes demonstrate potential to improve urban-rural diversity, but their impact on inclusion of racially and ethnically marginalized populations requires further study. To optimize inclusive participation in decentralized clinical trials, efforts must be made to build trust among marginalized communities, and to ensure access to remote technology.
One challenge for multisite clinical trials is ensuring that the conditions of an informative trial are incorporated into all aspects of trial planning and execution. The multicenter model can provide the potential for a more informative environment, but it can also place a trial at risk of becoming uninformative due to lack of rigor, quality control, or effective recruitment, resulting in premature discontinuation and/or non-publication. Key factors that support informativeness are having the right team and resources during study planning and implementation and adequate funding to support performance activities. This communication draws on the experience of the National Center for Advancing Translational Science (NCATS) Trial Innovation Network (TIN) to develop approaches for enhancing the informativeness of clinical trials. We distilled this information into three principles: (1) assemble a diverse team, (2) leverage existing processes and systems, and (3) carefully consider budgets and contracts. The TIN, comprised of NCATS, three Trial Innovation Centers, a Recruitment Innovation Center, and 60+ CTSA Program hubs, provides resources to investigators who are proposing multicenter collaborations. In addition to sharing principles that support the informativeness of clinical trials, we highlight TIN-developed resources relevant for multicenter trial initiation and conduct.
In the wake of the most recent protests in Belarus following the 2020 Presidential Election, it is useful to explore patterns of satisfaction with the political system, confidence in political institutions, and political participation at different points in time during President Lukashenko’s rule. We utilize Wave 3 of the World Values Study (WVS) and Wave 7 of the Joint European Values Study (EVS)/WVS to (1) analyze whether citizens’ dissatisfaction with the Belarusian government differed between 1996 and 2018, and (2) whether there was a change in political participation during that period. Responses over time suggest that satisfaction with the government and confidence in institutions was not lower in 2018 than it had been in 1996. However, as we discuss in the article, this may be an artifact of authoritarian consolidation and concern/fears about revealing preferences. We also find that the willingness to engage in protests remained more or less the same between these two time periods, especially among those dissatisfied with the political system. These results suggest that once highly dissatisfied citizens took to the streets in 2020, a number of internal and external factors might have triggered a bandwagon effect that pushed other citizens to also join the demonstrations.
OBJECTIVES/GOALS: The Informatics Program in the Wake Forest CTSI is experiencing rapid growth. To accommodate an influx of both staff and clinical investigators this program Invests resources in self-service tools to increase researcher capabilities Automates resource intensive activities Creates transparency of operational processes for researchers. METHODS/STUDY POPULATION: Self-service tools (immediate/automated) The i2b2 tool queries clinical data for feasibility numbers and cohort identification; and provides demographic breakdowns of patient sets The Data Puller tool pulls identified patient data (with IRB approval) The SKAN NLP tool pulls aggregate numbers from over 3 million clinical notes Automation A custom-built tracking system automates parts of tracking requests for data and checking IRB protocols Operational transparency The Data Request Dashboard shows requesters information about their request and where it is in the process of being fulfilled The Data Quote tool was constructed leveraging the integrated CTSA informatics network and uses details of the request to estimate how long it will take to complete. RESULTS/ANTICIPATED RESULTS: i2b2 has had over 300 unique users each year; 80% are faculty or research staff, 20% are clinicians or students. From 2017-2021 there have been an average of 300 i2b2 queries and 45 Data Puller pulls each month. SKAN has had 58 unique users since its implementation in late 2020, averaging 5 new users per month. The automated data request tracking system took approximately 30 staff hours to create and saves an average of 4 hours of staff time per week. It also decreases human error by pulling/pushing information directly between systems. The Informatics program has received positive feedback from researchers who use the Data Request Dashboard. The Data Quote Tool is being used to give standardized quotes to researchers. DISCUSSION/SIGNIFICANCE: Investing resources in developing and implementing self-service tools and operational transparency ultimately reduces overall resource consumption, saving staff and investigator time and effort. This enables the Informatics program to maintain a high standard of service while experiencing rapid growth.
The Trial Innovation Network has established an infrastructure for single IRB review in response to federal policies. The Network’s single IRB (sIRBs) have successfully supported over 70 multisite studies via more than 800 reliance arrangements. This has generated several lessons learned that can benefit the national clinical research enterprise, as we work to improve the conduct of clinical trials. These lessons include distinguishing the roles of the single IRB from institutional Human Research Protections programs, establishing a consistent sIRB review model, standardizing collection of local context and supplemental, study-specific information, and educating and empowering lead study teams to support their sites.
Inpatient surgical site infections (SSIs) cause morbidity in children. The SSI rate among pediatric ambulatory surgery patients is less clear. To fill this gap, we conducted a multiple-institution, retrospective epidemiologic study to identify incidence, risk factors, and outcomes.
Methods:
We identified patients aged <22 years with ambulatory visits between October 2010 and September 2015 via electronic queries at 3 medical centers. We performed sample chart reviews to confirm ambulatory surgery and adjudicate SSIs. Weighted Poisson incidence rates were calculated. Separately, we used case–control methodology using multivariate backward logistical regression to assess risk-factor association with SSI.
Results:
In total, 65,056 patients were identified by queries, and we performed complete chart reviews for 13,795 patients; we identified 45 SSIs following ambulatory surgery. The weighted SSI incidence following pediatric ambulatory surgery was 2.00 SSI per 1,000 ambulatory surgeries (95% confidence interval [CI], 1.37–3.00). Integumentary surgeries had the highest weighted SSI incidence, 3.24 per 1,000 ambulatory surgeries (95% CI, 0.32–12). The following variables carried significantly increased odds of infection: clean contaminated or contaminated wound class compared to clean (odds ratio [OR], 9.8; 95% CI, 2.0–48), other insurance type compared to private (OR, 4.0; 95% CI, 1.6–9.8), and surgery on weekend day compared to weekday (OR, 30; 95% CI, 2.9–315). Of the 45 instances of SSI following pediatric ambulatory surgery, 40% of patients were admitted to the hospital and 36% required a new operative procedure or bedside incision and drainage.
Conclusions:
Our findings suggest that morbidity is associated with SSI following ambulatory surgery in children, and we also identified possible targets for intervention.
Background: Hospitalized patients may unknowingly carry severe acute respiratory coronavirus virus 2 (SARS-CoV-2), even if they are admitted for other reasons. Because SARS-CoV-2 may remain positive by reverse-transcriptase polymerase chain reaction (RT-PCR) for months after infection, patients with a positive result may not necessarily be infectious. We aimed to determine the frequency of SARS-CoV-2 infections in patients admitted for reasons unrelated to coronavirus disease 2019 (COVID-19). Methods: The University of Iowa Hospitals and Clinics is an 811-bed tertiary-care center. We use a nasopharyngeal SARS-CoV-2 RT-PCR to screen admitted patients without signs or symptoms compatible with COVID-19. Patients with positive tests undergo a repeat test to assess cycle threshold (Ct) value kinetics. We reviewed records for patients with positive RT-PCR screening admitted during July–October 2020. We used a combination of history, serologies, and RT-PCR Ct values to assess and qualify likelihood of infectiousness: (1) likely infectious, if Ct values were <29, or (2) likely not infectious, if 1 or both samples had Cts <30 with or without a positive SARS-CoV-2 antinucleocapsid IgG/IgM test or history of a positive result in the past 90 days. Contact tracing was only conducted for patients likely to be infectious. We describe the isolation duration and contact tracing data. Results: In total, 6,447 patients were tested on hospital admission for any reason (persons under investigation or admitted for reasons other than COVID-19). Of these, 240 (4%) had positive results, but 65 (27%) of these were admitted for reasons other than COVID-19. In total, 55 patients had Ct values available and were included in this analysis. The median age was 56 years (range, 0–91), 28 (51%) were male, and 12 (5%) were children. The most frequent admission syndromes were neurological (36%), gastrointestinal (16%), and trauma (16%). Our assessment revealed 23 likely infections (42%; 14 definite, 9 possible) and 32 cases likely not infectious (58%). The mean Ct for patients who were likely infectious was 22; it was 34 for patients who were likely not infectious. Mean duration of in-hospital isolation was 6 days for those who were likely infectious and 2 days for those who were likely not infectious. We detected 8 individuals (1 healthcare worker and 7 patients) who were exposed to a likely infectious patient. Conclusions: SARS-CoV-2 infection in patients hospitalized for other reasons was infrequent. An assessment of the likelihood of infectiousness including history, RT-PCR Cts, and serology may help prioritize patients in need of isolation and contact investigations.
Patients admitted to the hospital may unknowingly carry severe acute respiratory coronavirus virus 2 (SARS-CoV-2), and hospitals have implemented SARS-CoV-2 admission screening. However, because SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR) assays may remain positive for months after infection, positive results may represent active or past infection. We determined the prevalence and infectiousness of patients who were admitted for reasons unrelated to COVID-19 but tested positive for SARS-CoV-2 on admission screening.
Methods:
We conducted an observational study at the University of Iowa Hospitals & Clinics from July 7 to October 25, 2020. All patients admitted without suspicion of COVID-19 were included, and medical records of those with a positive admission screening test were reviewed. Infectiousness was determined using patient history, PCR cycle threshold (Ct) value, and serology.
Results:
In total, 5,913 patients were screened and admitted for reasons unrelated to COVID-19. Of these, 101 had positive admission RT-PCR results; 36 of these patients were excluded because they had respiratory signs/symptoms on admission on chart review. Also, 65 patients (1.1%) did not have respiratory symptoms. Finally, 55 patients had Ct values available and were included in this analysis. The median age of the final cohort was 56 years and 51% were male. Our assessment revealed that 23 patients (42%) were likely infectious. The median duration of in-hospital isolation was 5 days for those likely infectious and 2 days for those deemed noninfectious.
Conclusions:
SARS-CoV-2 was infrequent among patients admitted for reasons unrelated to COVID-19. An assessment of the likelihood of infectiousness using clinical history, RT-PCR Ct values, and serology may help in making the determination to discontinue isolation and conserve resources.
The COVID-19 pandemic prompted the development and implementation of hundreds of clinical trials across the USA. The Trial Innovation Network (TIN), funded by the National Center for Advancing Translational Sciences, was an established clinical research network that pivoted to respond to the pandemic.
Methods:
The TIN’s three Trial Innovation Centers, Recruitment Innovation Center, and 66 Clinical and Translational Science Award Hub institutions, collaborated to adapt to the pandemic’s rapidly changing landscape, playing central roles in the planning and execution of pivotal studies addressing COVID-19. Our objective was to summarize the results of these collaborations and lessons learned.
Results:
The TIN provided 29 COVID-related consults between March 2020 and December 2020, including 6 trial participation expressions of interest and 8 community engagement studios from the Recruitment Innovation Center. Key lessons learned from these experiences include the benefits of leveraging an established infrastructure, innovations surrounding remote research activities, data harmonization and central safety reviews, and early community engagement and involvement.
Conclusions:
Our experience highlighted the benefits and challenges of a multi-institutional approach to clinical research during a pandemic.
An inflammation-induced imbalance in the kynurenine pathway (KP) has been reported in major depressive disorder but the utility of these metabolites as predictive or therapeutic biomarkers of behavioral activation (BA) therapy is unknown.
Methods
Serum samples were provided by 56 depressed individuals before BA therapy and 29 of these individuals also provided samples after 10 weeks of therapy to measure cytokines and KP metabolites. The PROMIS Depression Scale (PROMIS-D) and the Sheehan Disability Scale were administered weekly and the Beck depression inventory was administered pre- and post-therapy. Data were analyzed with linear mixed-effect, general linear, and logistic regression models. The primary outcome for the biomarker analyses was the ratio of kynurenic acid to quinolinic acid (KynA/QA).
Results
BA decreased depression and disability scores (p's < 0.001, Cohen's d's > 0.5). KynA/QA significantly increased at post-therapy relative to baseline (p < 0.001, d = 2.2), an effect driven by a decrease in QA post-therapy (p < 0.001, uncorrected, d = 3.39). A trend towards a decrease in the ratio of kynurenine to tryptophan (KYN/TRP) was also observed (p = 0.054, uncorrected, d = 0.78). Neither the change in KynA/QA, nor baseline KynA/QA were associated with response to BA therapy.
Conclusion
The current findings together with previous research show that electronconvulsive therapy, escitalopram, and ketamine decrease concentrations of the neurotoxin, QA, raise the possibility that a common therapeutic mechanism underlies diverse forms of anti-depressant treatment but future controlled studies are needed to test this hypothesis.
Ambulatory healthcare-associated infections (HAIs) occur frequently in children and are associated with morbidity. Less is known about ambulatory HAI costs. This study estimated additional costs associated with pediatric ambulatory central-line–associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTI), and surgical site infections (SSIs) following ambulatory surgery.
Design:
Retrospective case-control study.
Setting:
Four academic medical centers.
Patients:
Children aged 0–22 years seen between 2010 and 2015 and at risk for HAI as identified by electronic queries.
Methods:
Chart review adjudicated HAIs. Charges were obtained for patients with HAIs and matched controls 30 days before HAI, on the day of, and 30 days after HAI. Charges were converted to costs and 2015 USD. Mixed-effects linear regression was used to estimate the difference-in-differences of HAI case versus control costs in 2 models: unrecorded charge values considered missing and a sensitivity analysis with unrecorded charge considered $0.
Results:
Our search identified 177 patients with ambulatory CLABSIs, 53 with ambulatory CAUTIs, and 26 with SSIs following ambulatory surgery who were matched with 382, 110, and 75 controls, respectively. Additional cost associated with an ambulatory CLABSI was $5,684 (95% confidence interval [CI], $1,005–$10,362) and $6,502 (95% CI, $2,261–$10,744) in the 2 models; cost associated with a CAUTI was $6,660 (95% CI, $1,055, $12,145) and $2,661 (95% CI, −$431 to $5,753); cost associated with an SSI following ambulatory surgery at 1 institution only was $6,370 (95% CI, $4,022–$8,719).
Conclusions:
Ambulatory HAI in pediatric patients are associated with significant additional costs. Further work is needed to reduce ambulatory HAIs.
Longitudinal studies of patterns of healthcare contacts in those who die by suicide to identify those at risk are scarce.
Aims
To examine type and timing of healthcare contacts in those who die by suicide.
Method
A population-based electronic case–control study of all who died by suicide in Wales, 2001–2017, linking individuals’ electronic healthcare records from general practices, emergency departments and hospitals. We used conditional logistic regression to calculate odds ratios, adjusted for deprivation. We performed a retrospective continuous longitudinal analysis comparing cases’ and controls’ contacts with health services.
Results
We matched 5130 cases with 25 650 controls (5 per case). A representative cohort of 1721 cases (8605 controls) were eligible for the fully linked analysis. In the week before their death, 31.4% of cases and 15.6% of controls contacted health services. The last point of contact was most commonly associated with mental health and most often occurred in general practices. In the month before their death, 16.6 and 13.0% of cases had an emergency department contact and a hospital admission respectively, compared with 5.5 and 4.2% of controls. At any week in the year before their death, cases were more likely to contact healthcare services than controls. Self-harm, mental health and substance misuse contacts were strongly linked with suicide risk, more so when they occurred in emergency departments or as emergency admissions.
Conclusions
Help-seeking occurs in those at risk of suicide and escalates in the weeks before their death. There is an opportunity to identify and intervene through these contacts.
Catheter-associated urinary tract infections (CAUTIs) occur frequently in pediatric inpatients, and they are associated with increased morbidity and cost. Few studies have investigated ambulatory CAUTIs, despite at-risk children utilizing home urinary catheterization. This retrospective cohort and case-control study determined incidence, risk factors, and outcomes of pediatric patients with ambulatory CAUTI.
Design:
Broad electronic queries identified potential patients with ambulatory urinary catheters, and direct chart review confirmed catheters and adjudicated whether ambulatory CAUTI occurred. CAUTI definitions included clean intermittent catheterization (CIC). Our matched case-control analysis assessed risk factors.
Setting:
Five urban, academic medical centers, part of the New York City Clinical Data Research Network.
Patients:
Potential patients were age <22 years who were seen between October 2010 and September 2015.
Results:
In total, 3,598 eligible patients were identified; 359 of these used ambulatory catheterization (representing186,616 ambulatory catheter days). Of these, 63 patients (18%) experienced 95 ambulatory CAUTIs. The overall ambulatory CAUTI incidence was 0.51 infections per 1,000 catheter days (1.35 for indwelling catheters and 0.47 for CIC; incidence rate ratio, 2.88). Patients with nonprivate medical insurance (odds ratio, 2.5; 95% confidence interval, 1.1–6.3) were significantly more likely to have ambulatory CAUTIs in bivariate models but not multivariable models. Also, 45% of ambulatory CAUTI resulted in hospitalization (median duration, 3 days); 5% resulted in intensive care admission; 47% underwent imaging; and 88% were treated with antibiotics.
Conclusions:
Pediatric ambulatory CAUTIs occur in 18% of patients with catheters; they are associated with morbidity and healthcare utilization. Ambulatory indwelling catheter CAUTI incidence exceeded national inpatient incidence. Future quality improvement research to reduce these harmful infections is warranted.