We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
Incidence of first-episode psychosis (FEP) varies substantially across geographic regions. Phenotypes of subclinical psychosis (SP), such as psychotic-like experiences (PLEs) and schizotypy, present several similarities with psychosis. We aimed to examine whether SP measures varied across different sites and whether this variation was comparable with FEP incidence within the same areas. We further examined contribution of environmental and genetic factors to SP.
Methods
We used data from 1497 controls recruited in 16 different sites across 6 countries. Factor scores for several psychopathological dimensions of schizotypy and PLEs were obtained using multidimensional item response theory models. Variation of these scores was assessed using multi-level regression analysis to estimate individual and between-sites variance adjusting for age, sex, education, migrant, employment and relational status, childhood adversity, and cannabis use. In the final model we added local FEP incidence as a second-level variable. Association with genetic liability was examined separately.
Results
Schizotypy showed a large between-sites variation with up to 15% of variance attributable to site-level characteristics. Adding local FEP incidence to the model considerably reduced the between-sites unexplained schizotypy variance. PLEs did not show as much variation. Overall, SP was associated with younger age, migrant, unmarried, unemployed and less educated individuals, cannabis use, and childhood adversity. Both phenotypes were associated with genetic liability to schizophrenia.
Conclusions
Schizotypy showed substantial between-sites variation, being more represented in areas where FEP incidence is higher. This supports the hypothesis that shared contextual factors shape the between-sites variation of psychosis across the spectrum.
The objectives of this study were to investigate the effect of level and timing of silage supplementation during early lactation on animal performance and dry matter intake (DMI). Two farm-lets were established with a high (1253 kg DM/ha) and low (862 kg DM/ha) grass availability at turnout. In spring, cows were assigned to one of two treatments as they calved over 2 years; high grass (HG) and low grass (LG). During period 1 (week 1–6), cows on the HG treatment were offered a high daily herbage allowance (DHA) with low silage and the LG treatment were offered a low DHA with high silage. In period 2 (week 7–12), half of the cows from the HG treatment in P1 switched to the LG treatment in P2 and vice versa as 20 LG cows in P1 switched to the HG treatment in P2. Cows on the HG treatment in P2 received a high DHA with no silage and the LG treatment received a low DHA with 3 kg DM/cow silage. Grass DMI was significantly higher for the HG treatment during both periods (+1.6 and +3.4 kg DM/cow/day, respectively). The HG treatment produced +0.9 kg milk/cow/day and had a higher protein concentration (+1.1 g/kg milk) compared to cows on the LG treatment during period 2. Differences in animal performance observed in period 2 were maintained throughout the 8-week carryover period.
While cannabis use is a well-established risk factor for psychosis, little is known about any association between reasons for first using cannabis (RFUC) and later patterns of use and risk of psychosis.
Methods
We used data from 11 sites of the multicentre European Gene-Environment Interaction (EU-GEI) case–control study. 558 first-episode psychosis patients (FEPp) and 567 population controls who had used cannabis and reported their RFUC.
We ran logistic regressions to examine whether RFUC were associated with first-episode psychosis (FEP) case–control status. Path analysis then examined the relationship between RFUC, subsequent patterns of cannabis use, and case–control status.
Results
Controls (86.1%) and FEPp (75.63%) were most likely to report ‘because of friends’ as their most common RFUC. However, 20.1% of FEPp compared to 5.8% of controls reported: ‘to feel better’ as their RFUC (χ2 = 50.97; p < 0.001). RFUC ‘to feel better’ was associated with being a FEPp (OR 1.74; 95% CI 1.03–2.95) while RFUC ‘with friends’ was associated with being a control (OR 0.56; 95% CI 0.37–0.83). The path model indicated an association between RFUC ‘to feel better’ with heavy cannabis use and with FEPp-control status.
Conclusions
Both FEPp and controls usually started using cannabis with their friends, but more patients than controls had begun to use ‘to feel better’. People who reported their reason for first using cannabis to ‘feel better’ were more likely to progress to heavy use and develop a psychotic disorder than those reporting ‘because of friends’.
Current psychiatric diagnoses, although heritable, have not been clearly mapped onto distinct underlying pathogenic processes. The same symptoms often occur in multiple disorders, and a substantial proportion of both genetic and environmental risk factors are shared across disorders. However, the relationship between shared symptoms and shared genetic liability is still poorly understood.
Aims
Well-characterised, cross-disorder samples are needed to investigate this matter, but few currently exist. Our aim is to develop procedures to purposely curate and aggregate genotypic and phenotypic data in psychiatric research.
Method
As part of the Cardiff MRC Mental Health Data Pathfinder initiative, we have curated and harmonised phenotypic and genetic information from 15 studies to create a new data repository, DRAGON-Data. To date, DRAGON-Data includes over 45 000 individuals: adults and children with neurodevelopmental or psychiatric diagnoses, affected probands within collected families and individuals who carry a known neurodevelopmental risk copy number variant.
Results
We have processed the available phenotype information to derive core variables that can be reliably analysed across groups. In addition, all data-sets with genotype information have undergone rigorous quality control, imputation, copy number variant calling and polygenic score generation.
Conclusions
DRAGON-Data combines genetic and non-genetic information, and is available as a resource for research across traditional psychiatric diagnostic categories. Algorithms and pipelines used for data harmonisation are currently publicly available for the scientific community, and an appropriate data-sharing protocol will be developed as part of ongoing projects (DATAMIND) in partnership with Health Data Research UK.
Response to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment.
Aims
To use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder.
Method
This study utilised genetic and clinical data (n = 1034) collected as part of the International Consortium on Lithium Genetics (ConLi+Gen) project. Polygenic risk scores (PRS) were computed for schizophrenia and major depressive disorder, and then combined with clinical variables using a cross-validated machine-learning regression approach. Unimodal, multimodal and genetically stratified models were trained and validated using ridge, elastic net and random forest regression on 692 patients with bipolar disorder from ten study sites using leave-site-out cross-validation. All models were then tested on an independent test set of 342 patients. The best performing models were then tested in a classification framework.
Results
The best performing linear model explained 5.1% (P = 0.0001) of variance in lithium response and was composed of clinical variables, PRS variables and interaction terms between them. The best performing non-linear model used only clinical variables and explained 8.1% (P = 0.0001) of variance in lithium response. A priori genomic stratification improved non-linear model performance to 13.7% (P = 0.0001) and improved the binary classification of lithium response. This model stratified patients based on their meta-polygenic loadings for major depressive disorder and schizophrenia and was then trained using clinical data.
Conclusions
Using PRS to first stratify patients genetically and then train machine-learning models with clinical predictors led to large improvements in lithium response prediction. When used with other PRS and biological markers in the future this approach may help inform which patients are most likely to respond to lithium treatment.
Schizophrenia (SZ), bipolar disorder (BD) and depression (D) run in families. This susceptibility is partly due to hundreds or thousands of common genetic variants, each conferring a fractional risk. The cumulative effects of the associated variants can be summarised as a polygenic risk score (PRS). Using data from the EUropean Network of national schizophrenia networks studying Gene-Environment Interactions (EU-GEI) first episode case–control study, we aimed to test whether PRSs for three major psychiatric disorders (SZ, BD, D) and for intelligent quotient (IQ) as a neurodevelopmental proxy, can discriminate affective psychosis (AP) from schizophrenia-spectrum disorder (SSD).
Methods
Participants (842 cases, 1284 controls) from 16 European EU-GEI sites were successfully genotyped following standard quality control procedures. The sample was stratified based on genomic ancestry and analyses were done only on the subsample representing the European population (573 cases, 1005 controls). Using PRS for SZ, BD, D, and IQ built from the latest available summary statistics, we performed simple or multinomial logistic regression models adjusted for 10 principal components for the different clinical comparisons.
Results
In case–control comparisons PRS-SZ, PRS-BD and PRS-D distributed differentially across psychotic subcategories. In case–case comparisons, both PRS-SZ [odds ratio (OR) = 0.7, 95% confidence interval (CI) 0.54–0.92] and PRS-D (OR = 1.31, 95% CI 1.06–1.61) differentiated AP from SSD; and within AP categories, only PRS-SZ differentiated BD from psychotic depression (OR = 2.14, 95% CI 1.23–3.74).
Conclusions
Combining PRS for severe psychiatric disorders in prediction models for psychosis phenotypes can increase discriminative ability and improve our understanding of these phenotypes. Our results point towards the potential usefulness of PRSs in specific populations such as high-risk or early psychosis phases.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
Alcohol use disorder (AUD) and schizophrenia (SCZ) frequently co-occur, and large-scale genome-wide association studies (GWAS) have identified significant genetic correlations between these disorders.
Methods
We used the largest published GWAS for AUD (total cases = 77 822) and SCZ (total cases = 46 827) to identify genetic variants that influence both disorders (with either the same or opposite direction of effect) and those that are disorder specific.
Results
We identified 55 independent genome-wide significant single nucleotide polymorphisms with the same direction of effect on AUD and SCZ, 8 with robust effects in opposite directions, and 98 with disorder-specific effects. We also found evidence for 12 genes whose pleiotropic associations with AUD and SCZ are consistent with mediation via gene expression in the prefrontal cortex. The genetic covariance between AUD and SCZ was concentrated in genomic regions functional in brain tissues (p = 0.001).
Conclusions
Our findings provide further evidence that SCZ shares meaningful genetic overlap with AUD.
Although attenuated psychotic symptoms in the psychosis clinical high-risk state (CHR-P) almost always occur in the context of a non-psychotic disorder (NPD), NPD is considered an undesired ‘comorbidity’ epiphenomenon rather than an integral part of CHR-P itself. Prospective work, however, indicates that much more of the clinical psychosis incidence is attributable to prior mood and drug use disorders than to psychosis clinical high-risk states per se. In order to examine this conundrum, we analysed to what degree the ‘risk’ in CHR-P is indexed by co-present NPD rather than attenuated psychosis per se.
Methods
We examined the incidence of early psychotic experiences (PE) with and without NPD (mood disorders, anxiety disorders, alcohol/drug use disorders), in a prospective general population cohort (n = 6123 at risk of incident PE at baseline). Four interview waves were conducted between 2007 and 2018 (NEMESIS-2). The incidence of PE, alone (PE-only) or with NPD (PE + NPD) was calculated, as were differential associations with schizophrenia polygenic risk score (PRS-Sz), environmental, demographical, clinical and cognitive factors.
Results
The incidence of PE + NPD (0.37%) was lower than the incidence of PE-only (1.04%), representing around a third of the total yearly incidence of PE. Incident PE + NPD was, in comparison with PE-only, differentially characterised by poor functioning, environmental risks, PRS-Sz, positive family history, prescription of antipsychotic medication and (mental) health service use.
Conclusions
The risk in ‘clinical high risk’ states is mediated not by attenuated psychosis per se but specifically the combination of attenuated psychosis and NPD. CHR-P/APS research should be reconceptualised from a focus on attenuated psychotic symptoms with exclusion of non-psychotic DSM-disorders, as the ‘pure' representation of a supposedly homotypic psychosis risk state, towards a focus on poor-outcome NPDs, characterised by a degree of psychosis admixture, on the pathway to psychotic disorder outcomes.
Individuals with schizophrenia are at higher risk of physical illnesses, which are a major contributor to their 20-year reduced life expectancy. It is currently unknown what causes the increased risk of physical illness in schizophrenia.
Aims
To link genetic data from a clinically ascertained sample of individuals with schizophrenia to anonymised National Health Service (NHS) records. To assess (a) rates of physical illness in those with schizophrenia, and (b) whether physical illness in schizophrenia is associated with genetic liability.
Method
We linked genetic data from a clinically ascertained sample of individuals with schizophrenia (Cardiff Cognition in Schizophrenia participants, n = 896) to anonymised NHS records held in the Secure Anonymised Information Linkage (SAIL) databank. Physical illnesses were defined from the General Practice Database and Patient Episode Database for Wales. Genetic liability for schizophrenia was indexed by (a) rare copy number variants (CNVs), and (b) polygenic risk scores.
Results
Individuals with schizophrenia in SAIL had increased rates of epilepsy (standardised rate ratio (SRR) = 5.34), intellectual disability (SRR = 3.11), type 2 diabetes (SRR = 2.45), congenital disorders (SRR = 1.77), ischaemic heart disease (SRR = 1.57) and smoking (SRR = 1.44) in comparison with the general SAIL population. In those with schizophrenia, carrier status for schizophrenia-associated CNVs and neurodevelopmental disorder-associated CNVs was associated with height (P = 0.015–0.017), with carriers being 7.5–7.7 cm shorter than non-carriers. We did not find evidence that the increased rates of poor physical health outcomes in schizophrenia were associated with genetic liability for the disorder.
Conclusions
This study demonstrates the value of and potential for linking genetic data from clinically ascertained research studies to anonymised health records. The increased risk for physical illness in schizophrenia is not caused by genetic liability for the disorder.
There is evidence that environmental and genetic risk factors for schizophrenia spectrum disorders are transdiagnostic and mediated in part through a generic pathway of affective dysregulation.
Methods
We analysed to what degree the impact of schizophrenia polygenic risk (PRS-SZ) and childhood adversity (CA) on psychosis outcomes was contingent on co-presence of affective dysregulation, defined as significant depressive symptoms, in (i) NEMESIS-2 (n = 6646), a representative general population sample, interviewed four times over nine years and (ii) EUGEI (n = 4068) a sample of patients with schizophrenia spectrum disorder, the siblings of these patients and controls.
Results
The impact of PRS-SZ on psychosis showed significant dependence on co-presence of affective dysregulation in NEMESIS-2 [relative excess risk due to interaction (RERI): 1.01, p = 0.037] and in EUGEI (RERI = 3.39, p = 0.048). This was particularly evident for delusional ideation (NEMESIS-2: RERI = 1.74, p = 0.003; EUGEI: RERI = 4.16, p = 0.019) and not for hallucinatory experiences (NEMESIS-2: RERI = 0.65, p = 0.284; EUGEI: −0.37, p = 0.547). A similar and stronger pattern of results was evident for CA (RERI delusions and hallucinations: NEMESIS-2: 3.02, p < 0.001; EUGEI: 6.44, p < 0.001; RERI delusional ideation: NEMESIS-2: 3.79, p < 0.001; EUGEI: 5.43, p = 0.001; RERI hallucinatory experiences: NEMESIS-2: 2.46, p < 0.001; EUGEI: 0.54, p = 0.465).
Conclusions
The results, and internal replication, suggest that the effects of known genetic and non-genetic risk factors for psychosis are mediated in part through an affective pathway, from which early states of delusional meaning may arise.
This study attempted to replicate whether a bias in probabilistic reasoning, or ‘jumping to conclusions’(JTC) bias is associated with being a sibling of a patient with schizophrenia spectrum disorder; and if so, whether this association is contingent on subthreshold delusional ideation.
Methods
Data were derived from the EUGEI project, a 25-centre, 15-country effort to study psychosis spectrum disorder. The current analyses included 1261 patients with schizophrenia spectrum disorder, 1282 siblings of patients and 1525 healthy comparison subjects, recruited in Spain (five centres), Turkey (three centres) and Serbia (one centre). The beads task was used to assess JTC bias. Lifetime experience of delusional ideation and hallucinatory experiences was assessed using the Community Assessment of Psychic Experiences. General cognitive abilities were taken into account in the analyses.
Results
JTC bias was positively associated not only with patient status but also with sibling status [adjusted relative risk (aRR) ratio : 4.23 CI 95% 3.46–5.17 for siblings and aRR: 5.07 CI 95% 4.13–6.23 for patients]. The association between JTC bias and sibling status was stronger in those with higher levels of delusional ideation (aRR interaction in siblings: 3.77 CI 95% 1.67–8.51, and in patients: 2.15 CI 95% 0.94–4.92). The association between JTC bias and sibling status was not stronger in those with higher levels of hallucinatory experiences.
Conclusions
These findings replicate earlier findings that JTC bias is associated with familial liability for psychosis and that this is contingent on the degree of delusional ideation but not hallucinations.
It is not clear to what extent associations between schizophrenia, cannabis use and cigarette use are due to a shared genetic etiology. We, therefore, examined whether schizophrenia genetic risk associates with longitudinal patterns of cigarette and cannabis use in adolescence and mediating pathways for any association to inform potential reduction strategies.
Methods
Associations between schizophrenia polygenic scores and longitudinal latent classes of cigarette and cannabis use from ages 14 to 19 years were investigated in up to 3925 individuals in the Avon Longitudinal Study of Parents and Children. Mediation models were estimated to assess the potential mediating effects of a range of cognitive, emotional, and behavioral phenotypes.
Results
The schizophrenia polygenic score, based on single nucleotide polymorphisms meeting a training-set p threshold of 0.05, was associated with late-onset cannabis use (OR = 1.23; 95% CI = 1.08,1.41), but not with cigarette or early-onset cannabis use classes. This association was not mediated through lower IQ, victimization, emotional difficulties, antisocial behavior, impulsivity, or poorer social relationships during childhood. Sensitivity analyses adjusting for genetic liability to cannabis or cigarette use, using polygenic scores excluding the CHRNA5-A3-B4 gene cluster, or basing scores on a 0.5 training-set p threshold, provided results consistent with our main analyses.
Conclusions
Our study provides evidence that genetic risk for schizophrenia is associated with patterns of cannabis use during adolescence. Investigation of pathways other than the cognitive, emotional, and behavioral phenotypes examined here is required to identify modifiable targets to reduce the public health burden of cannabis use in the population.
The ‘jumping to conclusions’ (JTC) bias is associated with both psychosis and general cognition but their relationship is unclear. In this study, we set out to clarify the relationship between the JTC bias, IQ, psychosis and polygenic liability to schizophrenia and IQ.
Methods
A total of 817 first episode psychosis patients and 1294 population-based controls completed assessments of general intelligence (IQ), and JTC, and provided blood or saliva samples from which we extracted DNA and computed polygenic risk scores for IQ and schizophrenia.
Results
The estimated proportion of the total effect of case/control differences on JTC mediated by IQ was 79%. Schizophrenia polygenic risk score was non-significantly associated with a higher number of beads drawn (B = 0.47, 95% CI −0.21 to 1.16, p = 0.17); whereas IQ PRS (B = 0.51, 95% CI 0.25–0.76, p < 0.001) significantly predicted the number of beads drawn, and was thus associated with reduced JTC bias. The JTC was more strongly associated with the higher level of psychotic-like experiences (PLEs) in controls, including after controlling for IQ (B = −1.7, 95% CI −2.8 to −0.5, p = 0.006), but did not relate to delusions in patients.
Conclusions
Our findings suggest that the JTC reasoning bias in psychosis might not be a specific cognitive deficit but rather a manifestation or consequence, of general cognitive impairment. Whereas, in the general population, the JTC bias is related to PLEs, independent of IQ. The work has the potential to inform interventions targeting cognitive biases in early psychosis.
Attention-deficit hyperactivity disorder (ADHD) is associated with later depression and there is considerable genetic overlap between them. This study investigated if ADHD and ADHD genetic liability are causally related to depression using two different methods.
Methods
First, a longitudinal population cohort design was used to assess the association between childhood ADHD (age 7 years) and recurrent depression in young-adulthood (age 18–25 years) in N = 8310 individuals in the Avon Longitudinal Study of Parents and Children (ALSPAC). Second, two-sample Mendelian randomization (MR) analyses examined relationships between genetic liability for ADHD and depression utilising published Genome-Wide Association Study (GWAS) data.
Results
Childhood ADHD was associated with an increased risk of recurrent depression in young-adulthood (OR 1.35, 95% CI 1.05–1.73). MR analyses suggested a causal effect of ADHD genetic liability on major depression (OR 1.21, 95% CI 1.12–1.31). MR findings using a broader definition of depression differed, showing a weak influence on depression (OR 1.07, 95% CI 1.02–1.13).
Conclusions
Our findings suggest that ADHD increases the risk of depression later in life and are consistent with a causal effect of ADHD genetic liability on subsequent major depression. However, findings were different for more broadly defined depression.
Copy number variants (CNVs) play a significant role in disease pathogenesis in a small subset of individuals with schizophrenia (~2.5%). Chromosomal microarray testing is a first-tier genetic test for many neurodevelopmental disorders. Similar testing could be useful in schizophrenia.
Aims
To determine whether clinically identifiable phenotypic features could be used to successfully model schizophrenia-associated (SCZ-associated) CNV carrier status in a large schizophrenia cohort.
Method
Logistic regression and receiver operating characteristic (ROC) curves tested the accuracy of readily identifiable phenotypic features in modelling SCZ-associated CNV status in a discovery data-set of 1215 individuals with psychosis. A replication analysis was undertaken in a second psychosis data-set (n = 479).
Results
In the discovery cohort, specific learning disorder (OR = 8.12; 95% CI 1.16–34.88, P = 0.012), developmental delay (OR = 5.19; 95% CI 1.58–14.76, P = 0.003) and comorbid neurodevelopmental disorder (OR = 5.87; 95% CI 1.28–19.69, P = 0.009) were significant independent variables in modelling positive carrier status for a SCZ-associated CNV, with an area under the ROC (AUROC) of 74.2% (95% CI 61.9–86.4%). A model constructed from the discovery cohort including developmental delay and comorbid neurodevelopmental disorder variables resulted in an AUROC of 83% (95% CI 52.0–100.0%) for the replication cohort.
Conclusions
These findings suggest that careful clinical history taking to document specific neurodevelopmental features may be informative in screening for individuals with schizophrenia who are at higher risk of carrying known SCZ-associated CNVs. Identification of genomic disorders in these individuals is likely to have clinical benefits similar to those demonstrated for other neurodevelopmental disorders.
First-degree relatives of patients with psychotic disorder have higher levels of polygenic risk (PRS) for schizophrenia and higher levels of intermediate phenotypes.
Methods
We conducted, using two different samples for discovery (n = 336 controls and 649 siblings of patients with psychotic disorder) and replication (n = 1208 controls and 1106 siblings), an analysis of association between PRS on the one hand and psychopathological and cognitive intermediate phenotypes of schizophrenia on the other in a sample at average genetic risk (healthy controls) and a sample at higher than average risk (healthy siblings of patients). Two subthreshold psychosis phenotypes, as well as a standardised measure of cognitive ability, based on a short version of the WAIS-III short form, were used. In addition, a measure of jumping to conclusion bias (replication sample only) was tested for association with PRS.
Results
In both discovery and replication sample, evidence for an association between PRS and subthreshold psychosis phenotypes was observed in the relatives of patients, whereas in the controls no association was observed. Jumping to conclusion bias was similarly only associated with PRS in the sibling group. Cognitive ability was weakly negatively and non-significantly associated with PRS in both the sibling and the control group.
Conclusions
The degree of endophenotypic expression of schizophrenia polygenic risk depends on having a sibling with psychotic disorder, suggestive of underlying gene–environment interaction. Cognitive biases may better index genetic risk of disorder than traditional measures of neurocognition, which instead may reflect the population distribution of cognitive ability impacting the prognosis of psychotic disorder.