We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Objectives/Goals: Acute myeloid leukemia (AML) is the second most common leukemia among pediatric populations. Approximately 15% of pediatric AML cases have KMT2A gene rearrangements (KMT2A-r), which confers a worse prognosis. Our goal is to better characterize the biologic landscape of KMT2A-r pediatric AML. Methods/Study Population: This study utilizes deidentified peripheral blood and/or bone marrow samples banked in the Children’s Mercy Tumor Bank Biorepository. We investigated four KMT2A-r pediatric AML patients and six patients with other AML subtypes using samples collected at diagnosis and remission that were stored in the “tumor bank.” In addition, we assessed 47 tumor bank samples from patients with other leukemia subtypes. We performed differential expression (DE) analysis on bulk RNA sequencing comparing KMT2A-r and all other AML subtypes, as well as single-cell RNA sequencing and proteomic analysis on the larger cohort. We then coalesced these data to better identify processes and pathways that are dysregulated in KMT2A-r AML, specifically aiming to find those that were contributing to leukemogenesis. Results/Anticipated Results: Transcriptomic analysis showed that HOXA10 and MEIS1, two genes associated with immature myeloid populations and KMT2A-r leukemias, were more highly transcribed in AMLs than other leukemias. In addition, our DE analysis showed significantly higher transcription of ITGA7, a gene shown to correlate with poorer prognosis in AML, in our KMT2A-r samples when compared to other AML subtypes. FAM46C, a tumor suppressor gene contributing to mRNA stabilization, was less highly expressed in KMT2A-r AML when compared to other AML subtypes. Of note, low expression of FAM46C is associated with poorer survival and treatment response in multiple myeloma, and our findings suggest it may also be relevant to AML. Proteomic analysis is currently in process. Discussion/Significance of Impact: Transcriptomic analysis identifies unique molecular features of pediatric KMT2A-r AML. We anticipate that our proteomic data will do the same and will also corroborate our RNA findings. Taken in combination, these results will provide a more complete picture of the specific mechanisms contributing to this aggressive leukemic subtype.
NASA’s all-sky survey mission, the Transiting Exoplanet Survey Satellite (TESS), is specifically engineered to detect exoplanets that transit bright stars. Thus far, TESS has successfully identified approximately 400 transiting exoplanets, in addition to roughly 6 000 candidate exoplanets pending confirmation. In this study, we present the results of our ongoing project, the Validation of Transiting Exoplanets using Statistical Tools (VaTEST). Our dedicated effort is focused on the confirmation and characterisation of new exoplanets through the application of statistical validation tools. Through a combination of ground-based telescope data, high-resolution imaging, and the utilisation of the statistical validation tool known as TRICERATOPS, we have successfully discovered eight potential super-Earths. These planets bear the designations: TOI-238b (1.61$^{+0.09} _{-0.10}$ R$_\oplus$), TOI-771b (1.42$^{+0.11} _{-0.09}$ R$_\oplus$), TOI-871b (1.66$^{+0.11} _{-0.11}$ R$_\oplus$), TOI-1467b (1.83$^{+0.16} _{-0.15}$ R$_\oplus$), TOI-1739b (1.69$^{+0.10} _{-0.08}$ R$_\oplus$), TOI-2068b (1.82$^{+0.16} _{-0.15}$ R$_\oplus$), TOI-4559b (1.42$^{+0.13} _{-0.11}$ R$_\oplus$), and TOI-5799b (1.62$^{+0.19} _{-0.13}$ R$_\oplus$). Among all these planets, six of them fall within the region known as ‘keystone planets’, which makes them particularly interesting for study. Based on the location of TOI-771b and TOI-4559b below the radius valley we characterised them as likely super-Earths, though radial velocity mass measurements for these planets will provide more details about their characterisation. It is noteworthy that planets within the size range investigated herein are absent from our own solar system, making their study crucial for gaining insights into the evolutionary stages between Earth and Neptune.
All very massive early-type galaxies contain supermassive blackholes, but are these blackholes all sufficiently active to produce detectable radio continuum sources? We have used the 887.5 MHz Rapid ASKAP Continuum Survey DR1 to measure the radio emission from morphological early-type galaxies brighter than $K_S=9.5$ selected from the 2MASS Redshift Survey, HyperLEDA, and RC3. In line with previous studies, we find median radio power increases with infrared luminosity, with $P_{1.4} \propto L_K^{2.2}$, although the scatter about this relation spans several orders of magnitude. All 40 of the $M_K<-25.7$ early-type galaxies in our sample have measured radio flux densities that are more than $2\sigma$ above the background noise, with $1.4\,{\rm GHz}$ radio powers spanning ${\sim} 3 \times 10^{20}$ to ${\sim} 3\times 10^{25}\,{\rm W/Hz^{-1}}$. Cross-matching our sample with integral field spectroscopy of early-type galaxies reveals that the most powerful radio sources preferentially reside in galaxies with relatively low angular momentum (i.e. slow rotators). While the infrared colours of most galaxies in our early-type sample are consistent with passive galaxies with negligible star formation and the radio emission produced by active galactic nuclei or AGN remnants, very low levels of star formation could power the weakest radio sources with little effect on many other star formation rate tracers.
Over the last 25 years, radiowave detection of neutrino-generated signals, using cold polar ice as the neutrino target, has emerged as perhaps the most promising technique for detection of extragalactic ultra-high energy neutrinos (corresponding to neutrino energies in excess of 0.01 Joules, or 1017 electron volts). During the summer of 2021 and in tandem with the initial deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted radioglaciological measurements at Summit Station, Greenland to refine our understanding of the ice target. We report the result of one such measurement, the radio-frequency electric field attenuation length $L_\alpha$. We find an approximately linear dependence of $L_\alpha$ on frequency with the best fit of the average field attenuation for the upper 1500 m of ice: $\langle L_\alpha \rangle = ( ( 1154 \pm 121) - ( 0.81 \pm 0.14) \, ( \nu /{\rm MHz}) ) \,{\rm m}$ for frequencies ν ∈ [145 − 350] MHz.
Response to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment.
Aims
To use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder.
Method
This study utilised genetic and clinical data (n = 1034) collected as part of the International Consortium on Lithium Genetics (ConLi+Gen) project. Polygenic risk scores (PRS) were computed for schizophrenia and major depressive disorder, and then combined with clinical variables using a cross-validated machine-learning regression approach. Unimodal, multimodal and genetically stratified models were trained and validated using ridge, elastic net and random forest regression on 692 patients with bipolar disorder from ten study sites using leave-site-out cross-validation. All models were then tested on an independent test set of 342 patients. The best performing models were then tested in a classification framework.
Results
The best performing linear model explained 5.1% (P = 0.0001) of variance in lithium response and was composed of clinical variables, PRS variables and interaction terms between them. The best performing non-linear model used only clinical variables and explained 8.1% (P = 0.0001) of variance in lithium response. A priori genomic stratification improved non-linear model performance to 13.7% (P = 0.0001) and improved the binary classification of lithium response. This model stratified patients based on their meta-polygenic loadings for major depressive disorder and schizophrenia and was then trained using clinical data.
Conclusions
Using PRS to first stratify patients genetically and then train machine-learning models with clinical predictors led to large improvements in lithium response prediction. When used with other PRS and biological markers in the future this approach may help inform which patients are most likely to respond to lithium treatment.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
Stem cells give rise to the entirety of cells within an organ. Maintaining stem cell identity and coordinately regulating stem cell divisions is crucial for proper development. In plants, mobile proteins, such as WUSCHEL-RELATED HOMEOBOX 5 (WOX5) and SHORTROOT (SHR), regulate divisions in the root stem cell niche. However, how these proteins coordinately function to establish systemic behaviour is not well understood. We propose a non-cell autonomous role for WOX5 in the cortex endodermis initial (CEI) and identify a regulator, ANGUSTIFOLIA (AN3)/GRF-INTERACTING FACTOR 1, that coordinates CEI divisions. Here, we show with a multi-scale hybrid model integrating ordinary differential equations (ODEs) and agent-based modeling that quiescent center (QC) and CEI divisions have different dynamics. Specifically, by combining continuous models to describe regulatory networks and agent-based rules, we model systemic behaviour, which led us to predict cell-type-specific expression dynamics of SHR, SCARECROW, WOX5, AN3 and CYCLIND6;1, and experimentally validate CEI cell divisions. Conclusively, our results show an interdependency between CEI and QC divisions.
This chapter comprises the following sections: names, taxonomy, subspecies and distribution, descriptive notes, habitat, movements and home range, activity patterns, feeding ecology, reproduction and growth, behavior, parasites and diseases, status in the wild, and status in captivity.
The Erasmus Plus programme ‘Innovative Education and Training in high power laser plasmas’, otherwise known as PowerLaPs, is described. The PowerLaPs programme employs an innovative paradigm in that it is a multi-centre programme where teaching takes place in five separate institutes with a range of different aims and styles of delivery. The ‘in class’ time is limited to four weeks a year, and the programme spans two years. PowerLaPs aims to train students from across Europe in theoretical, applied and laboratory skills relevant to the pursuit of research in laser–plasma interaction physics and inertial confinement fusion (ICF). Lectures are intermingled with laboratory sessions and continuous assessment activities. The programme, which is led by workers from the Technological Educational Institute (TEI) of Crete, and supported by co-workers from the Queen’s University Belfast, the University of Bordeaux, the Czech Technical University in Prague, Ecole Polytechnique, the University of Ioannina, the University of Salamanca and the University of York, has just completed its first year. Thus far three Learning Teaching Training (LTT) activities have been held, at the Queen’s University Belfast, the University of Bordeaux and the Centre for Plasma Physics and Lasers (CPPL) of TEI Crete. The last of these was a two-week long Intensive Programme (IP), while the activities at the other two universities were each five days in length. Thus far work has concentrated upon training in both theoretical and experimental work in plasma physics, high power laser–matter interactions and high energy density physics. The nature of the programme will be described in detail and some metrics relating to the activities carried out to date will be presented.
The relationship between sildenafil dosing, exposure, and systemic hypotension in infants is incompletely understood.
Objectives
The aim of this study was to characterise the relationship between predicted sildenafil exposure and hypotension in hospitalised infants.
Methods
We extracted information on sildenafil dosing and clinical characteristics from electronic health records of 348 neonatal ICUs from 1997 to 2013, and we predicted drug exposure using a population pharmacokinetic model.
Results
We identified 232 infants receiving sildenafil at a median dose of 3.2 mg/kg/day (2.0, 6.0). The median steady-state area under the concentration–time curve over 24 hours (AUC24,SS) and maximum concentration of sildenafil (Cmax,SS,SIL) were 712 ng×hour/ml (401, 1561) and 129 ng/ml (69, 293), respectively. Systemic hypotension occurred in 9% of the cohort. In multivariable analysis, neither dosing nor exposure were associated with systemic hypotension: odds ratio=0.96 (95% confidence interval: 0.81, 1.14) for sildenafil dose; 0.87 (0.59, 1.28) for AUC24,SS; 1.19 (0.78, 1.82) for Cmax,SS,SIL.
Conclusions
We found no association between sildenafil dosing or exposure with systemic hypotension. Continued assessment of sildenafil’s safety profile in infants is warranted.
Optimal emergent management of traumatic hemorrhagic shock patients requires a better understanding of treatment provided in the prehospital/Emergency Medical Services (EMS) and emergency department (ED) settings.
Hypothesis/Problem
Described in this research are the initial clinical status, airway management, fluid and blood infusions, and time course of severely-injured hemorrhagic shock patients in the EMS and ED settings from the diaspirin cross-linked hemoglobin (DCLHb) clinical trial.
Methods
Data were analyzed from 17 US trauma centers gathered during a randomized, controlled, single-blinded efficacy trial of a hemoglobin solution (DCLHb) as add-on therapy versus standard therapy.
Results
Among the 98 randomized patients, the mean EMS Glasgow Coma Scale (GCS) was 10.6 (SD = 5.0), the mean EMS revised trauma score (RTS) was 6.3 (SD = 1.9), and the mean injury severity score (ISS) was 31 (SD = 17). Upon arrival to the ED, the GCS was 20% lower (7.8 (SD = 5.3) vs 9.7 (SD = 6.3)) and the RTS was 12% lower (5.3 (SD = 2.0) vs 6.0 (SD = 2.1)) than EMS values in blunt trauma patients (P < .001). By ED disposition, 80% of patients (78/98) were intubated. Rapid sequence intubation (RSI) was utilized in 77% (60/78), most often utilizing succinylcholine (65%) and midazolam (50%). The mean crystalloid volume infused was 4.2 L (SD = 3.4 L), 80% of which was infused within the ED. Emergency department blood transfusion occurred in 62% of patients, with an average transfused volume of 1.2 L (SD = 2.0 L). Blunt trauma patients received 2.1 times more total fluids (7.4 L vs 3.5 L, < .001) and 2.4 times more blood (2.4 L vs 1.0 L, P < .001). The mean time of patients taken from injury site to operating room (OR) was 113 minutes (SD = 87 minutes). Twenty-one (30%) of the 70 patients taken to the OR from the ED were sent within 60 minutes of the estimated injury time. Penetrating trauma patients were taken to the OR 52% sooner than blunt trauma patients (72 minutes vs 149 minutes, P < .001).
Conclusion
Both GCS and RTS decreased prior to ED arrival in blunt trauma patients. Intubation was performed using RSI, and crystalloid infusion of three times the estimated blood loss volume (L) and blood transfusion of the estimated blood loss volume (L) were provided in the EMS and ED settings. Surgical intervention for these trauma patients most often occurred more than one hour from the time of injury. Penetrating trauma patients received surgical intervention more rapidly than those with a blunt trauma mechanism.
SloanEP, KoenigsbergM, WeirWB, ClarkJM, O'ConnorR, OlingerM, CydulkaR. Emergency Resuscitation of Patients Enrolled in the US Diaspirin Cross-linked Hemoglobin (DCLHb) Clinical Efficacy Trial. Prehosp Disaster Med. 2015;30(1):1-8.