We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Converting knowledge from basic research into innovations that improve clinical care requires a specialized workforce that converts a laboratory invention into a product that can be developed and tested for clinical use. As the mandate to demonstrate more real-world impact from the national investment in research continues to grow, the demand for staff that specialize in product development and clinical trials continues to outpace supply. In this study, two academic medical institutions in the greater Houston–Galveston region termed this population the “bridge and clinical research professional” (B + CRP) workforce and assessed its turnover before and after the onset of the COVID-19 pandemic . Both institutions realized growth (1.2 vs 2.3-fold increase) in B + CRP-specific jobs from 2017 to 2022. Turnover increased 1.5–2-fold after the onset of the pandemic but unlike turnover in the larger clinical and translational research academic workforce, the instability did not resolve by 2022. These results are a baseline measurement of the instability of our regional B + CRP workforce and have informed the development of a regional alliance of universities, academic medical centers, and economic development organizations in the greater Houston–Galveston region to increase this highly specialized and skilled candidate pool.
The seminal Bolgiano–Obukhov (BO) theory established the fundamental framework for turbulent mixing and energy transfer in stably stratified fluids. However, the presence of BO scalings remains debatable despite their being observed in stably stratified atmospheric layers and convective turbulence. In this study, we performed precise temperature measurements with 51 high-resolution loggers above the seafloor for 46 h on the continental shelf of the northern South China Sea. The temperature observation exhibits three layers with increasing distance from the seafloor: the bottom mixed layer (BML), the mixing zone and the internal wave zone. A BO-like scaling $\alpha =-1.34\pm 0.10$ is observed in the temperature spectrum when the BML is in a weakly stable stratified ($N\sim 0.0018$ rad s$^{-1}$) and strongly sheared ($Ri\sim 0.0027$) condition, whereas in the unstably stratified convective turbulence of the BML, the scaling $\alpha =-1.76\pm 0.10$ clearly deviated from the BO theory but approached the classical $-$5/3 scaling in isotropic turbulence. This suggests that the convective turbulence is not the promise of BO scaling. In the mixing zone, where internal waves alternately interact with the BML, the scaling follows the Kolmogorov scaling. In the internal wave zone, the scaling $\alpha =-2.12 \pm 0.15$ is observed in the turbulence range and possible mechanisms are provided.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
Very-large-scale motions are commonly observed in moderate- and high-Reynolds-number wall turbulence, constituting a considerable portion of the Reynolds stress and skin friction. This study aims to investigate the behaviour of these motions in high-speed and high-Reynolds-number turbulent boundary layers at varying Mach numbers. With the aid of high-precision numerical simulations, numerical experiments and theoretical analysis, it is demonstrated that the very-large-scale motions are weakened in high-Mach-number turbulence at the same friction Reynolds numbers, leading to the reduction in turbulent kinetic energy in the outer region. Conversely, the lower wall temperature enhances the very-large-scale motions but shortens the scale separation between the structures in the near-wall and outer regions.
The role of Mn oxide in the abiotic formation of humic substances has been well demonstrated. However, information on the effect of crystal structure and surface-chemical characteristics of Mn oxide on this process is limited. In the present study, hexagonal and triclinic birnessites, synthesized in acidic and alkali media, were used to study the influence of the crystal-structure properties of birnessites on the oxidative polymerization of hydroquinone and to elucidate the catalytic mechanism of birnessites in the abiotic formation of humic-like polymers in hydroquinone-birnessite systems. The intermediate and final products formed in solution and solid-residue phases were identified by UV/Visible spectroscopy, atomic absorption spectrometry, Fourier-transform infrared spectroscopy, X-ray diffraction, solid-phase microextraction-gaschromatography-mas ss pectrometry, ion chromatography, and ultrafiltration. The degree of oxidative polymerization of hydroquinone wasenhanced with increase in the interlayer hydrated H+, the average oxidation state (AOS), and the specific surface area of birnessites. The nature of the functional groups of the humic-like polymers formed was, however, almost identical when hydroquinone was catalyzed by hexagonal and triclinic birnessites with similar AOS of Mn. The results indicated that crystal structure and surface-chemistry characteristics have significant influence on the oxidative activity of birnessites and the degree of polymerization of hydroquinone, but have little effect on the abiotic formation mechanism of humic-like polymers. The proposed oxidative polymerization pathway for hydroquinone isthat, asit approachesthe birnessite, it formsp recursor surface complexes. Asa strong oxidant, birnessite accepts an electron from hydroquinone, which is oxidized to 1,4-benzoquinone. The coupling, cleavage, polymerization, and decarboxylation reactionsaccompany the generation of 1,4-benzoquinone, lead to the release of CO2 and carboxylic acid fragments, the generation of rhodochrosite, and the ultimate formation of humic-like polymers. These findings are of fundamental significance in understanding the catalytic role of birnessite and the mechanism for the abiotic formation of humic substances in nature.
Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However, due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.
Unmanned aerial vehicles (UAVs) possess fast-moving abilities and have been used in various tasks in the past decades. However, their performances are still restricted by insufficient endurance and confined environments. Intuitively, combining other locomotion modes with UAVs, such as diving and driving, would be an appropriate idea to improve the robot’s adaptability and solve the endurance problem. Recently, the terrestrial/aerial hybrid robots have drawn the researchers’ eyes for their outstanding performances, which can deploy flight mode to traverse insurmountable terrains and ground mode to increase endurance and realize detailed searches. Therefore, this paper developed the autonomous quadrotor tilting hybrid robot (AQT-HR) to achieve terrestrial/aerial dual-modal mobility and verified that the robot delivers high energy efficiency. The AQT-HR can achieve flying and driving through a quadrotor tilting mechanism, which can alter one single driving force into different directions. Furthermore, the dynamic models of the hybrid robot’s aerial and ground locomotion are derived and introduced into the model-feedforward PID control algorithm for improving the robot’s flying stability. Finally, we conducted some mobility tests and experiments about traversing obstacles to demonstrate that the proposed hybrid robot can realize autonomous mode switching and perform a low energy consumption in ground movement mode.
Typical blood pressure (BP) manifests a circadian rhythm, which is often disrupted in hypertension, type 2 diabetes mellitus, kidney disease, and sleep apnea. Disrupted circadian rhythm of BP is emerging as an index for detrimental cardiovascular outcomes. Time-restricted feeding or eating (TRF or TRE) involves restraining the daily food intake time window to 4–12 hours, mostly during the active phase. In addition to the well-documented numerous metabolic benefits of active phase-TRF, emerging evidence indicates profound effects of active phase-TRF on BP circadian rhythm. This chapter reviews the evidence and the underlying mechanisms via which the timing of food intake profoundly affects BP circadian rhythm and briefly discusses the potential of active phase-TRF as a novel behavioral intervention to reduce cardiometabolic risk.
Two thrips, Megalurothrips usitatus (Bagnall) and Frankliniella intonsa (Trybom) are major pests of cowpea in South China. To realistically compare the growth, development and reproductive characteristics of these two thrips species, we compared their age-stage, two-sex life tables on cowpea pods under summer and winter natural environmental regimes. The results showed that the total preadult period of M. usitatus was 8.09 days, which was significantly longer than that of F. intonsa (7.06 days), while the adult female longevity of M. usitatus (21.14 days) was significantly shorter than that of F. intonsa (25.77 days). Significant differences were showed in male adult longevity (10.68 days for F. intonsa and 16.95 days for M. usitatus) and the female ratio of offspring (0.67 for F. intonsa and 0.51 for M. usitatus), and the total preadult period of M. usitatus (16.20 days) was significantly longer than that of F. intonsa (13.66 days) in the winter regime. The net reproductive rate (summer: R0 = 85.62, winter: R0 = 105.22), intrinsic rate of increase (summer: r = 0.3020 day−1, winter: r = 0.2115 day−1), finite rate of increase (summer: λ = 1.3526 day−1, winter: λ = 1.2356 day−1) and gross reproduction rate (summer: GRR = 139.34, winter: GRR = 159.88) of F. intonsa were higher than those of M. usitatus (summer: R0 = 82.91, r = 0.2741, λ = 1.3155, GRR = 135.71; winter: R0 = 80.62, r = 0.1672, λ = 1.1820, GRR = 131.26), and the mean generation times (summer: T = 14.73 days, winter: T = 22.01 days) of F. intonsa were significantly shorter than those of M. usitatus (summer: T = 16.11 days, winter: T = 26.25 days). These results may contribute to a better understanding of the bioecology of different thrips species, especially the interspecific competition between two economically important cowpea thrips with the same ecological niche in a changing environment.
Breast cancer is a high-risk disease with a high mortality rate among women. Chemotherapy plays an important role in the treatment of breast cancer. However, chemotherapy eventually results in tumours that are resistant to drugs. In recent years, many studies have revealed that the activation of Wnt/β-catenin signalling is crucial for the emergence and growth of breast tumours as well as the development of drug resistance. Additionally, drugs that target this pathway can reverse drug resistance in breast cancer therapy. Traditional Chinese medicine has the properties of multi-target and tenderness. Therefore, integrating traditional Chinese medicine and modern medicine into chemotherapy provides a new strategy for reversing the drug resistance of breast tumours. This paper mainly reviews the possible mechanism of Wnt/β-catenin in promoting the process of breast tumour drug resistance, and the progress of alkaloids extracted from traditional Chinese medicine in the targeting of this pathway in order to reverse the drug resistance of breast cancer.
Previous analyses of grey and white matter volumes have reported that schizophrenia is associated with structural changes. Deep learning is a data-driven approach that can capture highly compact hierarchical non-linear relationships among high-dimensional features, and therefore can facilitate the development of clinical tools for making a more accurate and earlier diagnosis of schizophrenia.
Aims
To identify consistent grey matter abnormalities in patients with schizophrenia, 662 people with schizophrenia and 613 healthy controls were recruited from eight centres across China, and the data from these independent sites were used to validate deep-learning classifiers.
Method
We used a prospective image-based meta-analysis of whole-brain voxel-based morphometry. We also automatically differentiated patients with schizophrenia from healthy controls using combined grey matter, white matter and cerebrospinal fluid volumetric features, incorporated a deep neural network approach on an individual basis, and tested the generalisability of the classification models using independent validation sites.
Results
We found that statistically reliable schizophrenia-related grey matter abnormalities primarily occurred in regions that included the superior temporal gyrus extending to the temporal pole, insular cortex, orbital and middle frontal cortices, middle cingulum and thalamus. Evaluated using leave-one-site-out cross-validation, the performance of the classification of schizophrenia achieved by our findings from eight independent research sites were: accuracy, 77.19–85.74%; sensitivity, 75.31–89.29% and area under the receiver operating characteristic curve, 0.797–0.909.
Conclusions
These results suggest that, by using deep-learning techniques, multidimensional neuroanatomical changes in schizophrenia are capable of robustly discriminating patients with schizophrenia from healthy controls, findings which could facilitate clinical diagnosis and treatment in schizophrenia.
No relevant studies have yet been conducted to explore which measurement can best predict the survival time of patients with cancer cachexia. This study aimed to identify an anthropometric measurement that could predict the 1-year survival of patients with cancer cachexia. We conducted a nested case–control study using data from a multicentre clinical investigation of cancer from 2013 to 2020. Cachexia was defined using the Fearon criteria. A total of 262 patients who survived less than 1 year and 262 patients who survived more than 1 year were included in this study. Six candidate variables were selected based on clinical experience and previous studies. Five variables, BMI, mid-arm circumference, mid-arm muscle circumference, calf circumference and triceps skin fold (TSF), were selected for inclusion in the multivariable model. In the conditional logistic regression analysis, TSF (P = 0·014) was identified as a significant independent protective factor. A similar result was observed in all patients with cancer cachexia (n 3084). In addition, a significantly stronger positive association between TSF and the 1-year survival of patients with cancer cachexia was observed in participants aged > 65 years (OR: 0·94; 95 % CI 0·89, 0·99) than in those aged ≤ 65 years (OR: 0·96; 95 % CI 0·93, 0·99; Pinteraction = 0·013) and in participants with no chronic disease (OR: 0·92; 95 % CI 0·87, 0·97) than in those with chronic disease (OR: 0·97; 95 % CI 0·94, 1·00; Pinteraction = 0·049). According to this study, TSF might be a good anthropometric measurement for predicting 1-year survival in patients with cancer cachexia.
The impact of baseline hypertension status on the BMI–mortality association is still unclear. We aimed to examine the moderation effect of hypertension on the BMI–mortality association using a rural Chinese cohort.
Design:
In this cohort study, we investigated the incident of mortality according to different BMI categories by hypertension status.
Setting:
Longitudinal population-based cohort.
Participants:
17 262 adults ≥18 years were recruited from July to August of 2013 and July to August of 2014 from a rural area in China.
Results:
During a median 6-year follow-up, we recorded 1109 deaths (610 with and 499 without hypertension). In adjusted models, as compared with BMI 22–24 kg/m2, with BMI ≤ 18, 18–20, 20–22, 24–26, 26–28, 28–30 and >30 kg/m2, the hazard ratios for mortality in normotensive participants were 1·92 (95% CI 1·23, 3·00), 1·44 (95% CI 1·01, 2·05), 1·14 (95% CI 0·82, 1·58), 0·96 (95% CI 0·70, 1·31), 0·96 (95% CI 0·65, 1·43), 1·32 (95% CI 0·81, 2·14) and 1·32 (95% CI 0·74, 2·35), respectively, and in hypertensive participants were 1·85 (95% CI 1·08, 3·17), 1·67 (95% CI 1·17, 2·39), 1·29 (95% CI 0·95, 1·75), 1·20 (95% CI 0·91, 1·58), 1·10 (95% CI 0·83, 1·46), 1·10 (95% CI 0·80, 1·52) and 0·61 (95% CI 0·40, 0·94), respectively. The risk of mortality was lower in individuals with hypertension with overweight or obesity v. normal weight, especially in older hypertensives (≥60 years old). Sensitivity analyses gave consistent results for both normotensive and hypertensive participants.
Conclusions:
Low BMI was significantly associated with increased risk of all-cause mortality regardless of hypertension status in rural Chinese adults, but high BMI decreased the mortality risk among individuals with hypertension, especially in older hypertensives.
ABSTRACT IMPACT: This study will provide the essential characterization of intrinsic neural activity in human brain organoids, both at the single cell and network levels, to harness for translational purposes. OBJECTIVES/GOALS: Brain organoids are 3D, stem cell-derived neural tissues that recapitulate neurodevelopment. However, to levy their full translational potential, a deeper understanding of their intrinsic neural activity is essential. Here, we present our preliminary analysis of maturing neural activity in human forebrain organoids. METHODS/STUDY POPULATION: Forebrain organoids were generated from human iPSC lines derived from healthy volunteers. Linear microelectrode probes were employed to record spontaneous electrical activity from day 77, 100, and 130 organoids. Single unit recordings were collected during hour-long recordings, involving baseline recordings followed by glutamatergic blockade. Subsequently, tetrodotoxin, was used to abolish action potential firing. Single units were identified via spike sorting, and the spatiotemporal evolution of baseline neural properties and network dynamics was characterized. RESULTS/ANTICIPATED RESULTS: Nine organoids were recorded successfully (n=3 per timepoint). A significant difference in number of units was seen across age groups (F (2,6) = 6.4178, p = 0.0323). Post hoc comparisons by the Tukey HSD test showed significantly more units in day 130 (51.67 ±14.15) than day 77 (16.33 ±14.98) organoids. Mean firing rates were significantly different in organoids based on age, with drug condition also trending toward significance (F (6,12) = 9.97; p = 0.0028 and p = 0.08 respectively). Post hoc comparisons showed a higher baseline firing rate in day 130 (0.99Hz ±0.30) organoids than their day 77 counterparts at baseline (0.31Hz ±0.066) and glutamate blockade (0.31Hz ±0.045). Preliminary network analysis showed no modularity or small-world features; however, these features are expected to emerge as organoids mature. DISCUSSION/SIGNIFICANCE OF FINDINGS: Initial analysis of brain organoid activity demonstrates changes in single unit properties as they mature. Additional work in this area, as well as further network analyses, will confer better sense of how to rationally utilize brain organoids for translational purposes.
This study aimed to explore the impacts of COVID-19 outbreak on mental health status in general population in different affected areas in China.
Methods
This was a comparative study including two groups of participants: (1) general population in an online survey in Ya'an and Jingzhou cities during the COVID-19 outbreak from 10–20 February 2020; and (2) matching general population selected from the mental health survey in Ya'an in 2019 (from January to May 2019). General Health Questionnaire (GHQ-12), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS) were used.
Results
There were 1775 participants (Ya'an in 2019 and 2020: 537 respectively; Jingzhou in 2020: 701). Participants in Ya'an had a significantly higher rate of general health problems (GHQ scores ⩾3) in 2020 (14.7%) than in 2019 (5.2%) (p < 0.001). Compared with Ya'an (8.0%), participants in Jingzhou in 2020 had a significantly higher rate of anxiety (SAS scores ⩾50, 24.1%) (p < 0.001). Participants in Ya'an in 2020 had a significantly higher rate of depression (SDS scores ⩾53, 55.3%) than in Jingzhou (16.3%) (p < 0.001). The risk factors of anxiety symptoms included female, number of family members (⩾6 persons), and frequent outdoor activities. The risk factors of depression symptoms included participants in Ya'an and uptake self-protective measures.
Conclusions
The prevalence of psychological symptoms has increased sharply in general population during the COVID-19 outbreak. People in COVID-19 severely affected areas may have higher scores of GHQ and anxiety symptoms. Culture-specific and individual-based psychosocial interventions should be developed for those in need during the COVID-19 outbreak.
The present study aimed to investigate the association of the Chinese visceral adiposity index (CVAI) and its 6-year change with hypertension risk and compare the ability of CVAI and other obesity indices to predict hypertension based on the Rural Chinese Cohort Study. Study participants were randomly recruited by a cluster sampling procedure, and 10 304 participants ≥18 years were included. Modified Poisson regression was used to derive adjusted relative risks (RR) and 95 % CI. We identified 2072 hypertension cases during a median of 6·03 years of follow-up. The RR for the highest v. lowest CVAI quartile were 1·29 (95 % CI 1·05, 1·59) for men and 1·53 (95 % CI 1·22, 1·91) for women. Per-sd increase in CVAI was associated with hypertension for both men (RR 1·09, 95 % CI 1·02, 1·16) and women (RR 1·14, 95 % CI 1·06, 1·22). Also, the area under the receiver operating characteristic curve value for hypertension was higher for CVAI than the four other obesity indices for both sexes (all P < 0·05). Finally, per-sd increase in CVAI change was associated with hypertension for both men (RR 1·26, 95 % CI 1·16, 1·36) and women (RR 1·23, 95 % CI 1·15, 1·30). Similar results were observed in sensitivity analyses. CVAI and its 6-year change are positively associated with hypertension risk. CVAI has better performance in predicting hypertension than other visceral obesity indices for both sexes. The current findings suggest CVAI as a reliable and applicable predictor of hypertension in rural Chinese adults.
Teenagers are important carriers of Neisseria meningitidis, which is a leading cause of invasive meningococcal disease. In China, the carriage rate and risk factors among teenagers are unclear. The present study presents a retrospective analysis of epidemiological data for N. meningitidis carriage from 2013 to 2017 in Suizhou city, China. The carriage rates were 3.26%, 2.22%, 3.33%, 3.53% and 9.88% for 2013, 2014, 2015, 2016 and 2017, respectively. From 2014 to 2017, the carriage rate in the 15- to 19-year-old age group (teenagers) was the highest and significantly higher than that in remain age groups. Subsequently, a larger scale survey (December 2017) for carriage rate and relative risk factors (population density, time spent in the classroom, gender and antibiotics use) were investigated on the teenagers (15- to 19-year-old age) at the same school. The carriage rate was still high at 33.48% (223/663) and varied greatly from 6.56% to 52.94% in a different class. Population density of the classroom was found to be a significant risk factor for carriage, and 1.4 persons/m2 is recommended as the maximum classroom density. Further, higher male gender ratio and more time spent in the classroom were also significantly associated with higher carriage. Finally, antibiotic use was associated with a significantly lower carriage rate. All the results imply that attention should be paid to the teenagers and various measures can be taken to reduce the N. meningitidis carriage, to prevent and control the outbreak of IMD.
To evaluate the effects of gestational weight gain (GWG) in the first trimester (GWG-F) and the rate of gestational weight gain in the second trimester (RGWG-S) on gestational diabetes mellitus (GDM), exploring the optimal GWG ranges for the avoidance of GDM in Chinese women.
Design:
A population-based prospective study was conducted. Gestational weight was measured regularly in every antenatal visit and assessed by the Institute of Medicine (IOM) criteria (2009). GDM was assessed with the 75-g, 2-h oral glucose tolerance test at 24–28 weeks of gestation. Multivariable logistic regression was performed to assess the effects of GWG-F and RGWG-S on GDM, stratified by pre-pregnancy BMI. In each BMI category, the GWG values corresponding to the lowest prevalence of GDM were defined as the optimal GWG range.
Setting:
Southwest China.
Participants:
Pregnant women (n 1910) in 2017.
Results:
After adjusting for confounders, GWG-F above IOM recommendations increased the risk of GDM (OR; 95 % CI) among underweight (2·500; 1·106, 5·655), normal-weight (1·396; 1·023, 1·906) and overweight/obese women (3·017; 1·118, 8·138) compared with women within IOM recommendations. No significant difference was observed between RGWG-S and GDM (P > 0·05) after adjusting for GWG-F based on the previous model. The optimal GWG-F ranges for the avoidance of GDM were 0·8–1·2, 0·8–1·2 and 0·35–0·70 kg for underweight, normal-weight and overweight/obese women, respectively.
Conclusions:
Excessive GWG in the first trimester, rather than the second trimester, is associated with increased risk of GDM regardless of pre-pregnancy BMI. Obstetricians should provide more pre-emptive guidance in achieving adequate GWG-F.
Metabolically healthy obesity refers to a subset of obese people with a normal metabolic profile. We aimed to explore the association between metabolically healthy and obesity status and risk of hypertension among Chinese adults from The Rural Chinese Cohort Study. This prospective cohort study enrolled 9137 Chinese adults without hypertension, type 2 diabetes or treatment for lipid abnormality at baseline (2007–2008) and followed up during 2013–2014. Modified Poisson regression models were used to examine the risk of hypertension by different metabolically healthy and obesity status, estimating relative risks (RR) and 95 % CI. During 6 years of follow-up, we identified 1734 new hypertension cases (721 men). After adjusting for age, sex, smoking and other confounding factors, risk of hypertension was increased with metabolically healthy general obesity (MHGO) defined by BMI (RR 1·75, 95 % CI 1·02, 3·00) and metabolically healthy abdominal obesity (MHAO) defined by waist circumference (RR 1·51, 95 % CI 1·12, 2·04) as compared with metabolically healthy non-obesity. The associations between metabolically healthy and obesity status and hypertension outcome were consistent after stratifying by sex, age, smoking, alcohol drinking and physical activity. Both MHGO and MHAO were associated with increased risk of hypertension. Obesity control programmes should be implemented to prevent or delay the development of hypertension in rural China.