We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A functionalization method for the specific and selective immobilization of the streptavidin (SA) protein on semiconductor nanowires (NWs) was developed. Silicon (Si) and silicon carbide (SiC) NWs were functionalized with 3-aminopropyltriethoxysilane (APTES) and subsequently biotinylated for the conjugation of SA. Existence of a thin native oxide shell on both Si and SiC NWs enabled efficient binding of APTES with the successive attachment of biotin and SA as was confirmed with x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and atomic force microscopy. Fluorescence microscopy demonstrated nonspecific, electrostatic binding of the SA and the bovine serum albumin (BSA) proteins to APTES-coated NWs. Inhibition of nonspecific BSA binding and enhancement of selective SA binding were achieved on biotinylated NWs. The biofunctionalized NWs have the potential to be used as biosensing platforms for the specific and selective detection of proteins.
Be, S, Si, and Ne implantations were performed at room temperature into InSb layers grown on undoped semi-insulating GaAs substrates. The implant damage in InSb is of ntype behavior. The implanted material was subjected to both isochronal and isothermal annealing schemes using a molybdenum strip heater. A maximum p-type activation of 90 % and si-type activation of 16 % was achieved for Be and S implants, respectively. Si implant has an amphoteric doping behavior.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.