We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field ($B_0 = 12.2$ T), compact ($R_0 = 1.85$ m, $a = 0.57$ m), superconducting, D-T tokamak with the goal of producing fusion gain $Q>2$ from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of $Q>2$ is achievable with conservative physics assumptions ($H_{98,y2} = 0.7$) and, with the nominal assumption of $H_{98,y2} = 1$, SPARC is projected to attain $Q \approx 11$ and $P_{\textrm {fusion}} \approx 140$ MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density ($\langle n_{e} \rangle \approx 3 \times 10^{20}\ \textrm {m}^{-3}$), high temperature ($\langle T_e \rangle \approx 7$ keV) and high power density ($P_{\textrm {fusion}}/V_{\textrm {plasma}} \approx 7\ \textrm {MW}\,\textrm {m}^{-3}$) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
SPARC is being designed to operate with a normalized beta of $\beta _N=1.0$, a normalized density of $n_G=0.37$ and a safety factor of $q_{95}\approx 3.4$, providing a comfortable margin to their respective disruption limits. Further, a low beta poloidal $\beta _p=0.19$ at the safety factor $q=2$ surface reduces the drive for neoclassical tearing modes, which together with a frozen-in classically stable current profile might allow access to a robustly tearing-free operating space. Although the inherent stability is expected to reduce the frequency of disruptions, the disruption loading is comparable to and in some cases higher than that of ITER. The machine is being designed to withstand the predicted unmitigated axisymmetric halo current forces up to 50 MN and similarly large loads from eddy currents forced to flow poloidally in the vacuum vessel. Runaway electron (RE) simulations using GO+CODE show high flattop-to-RE current conversions in the absence of seed losses, although NIMROD modelling predicts losses of ${\sim }80$ %; self-consistent modelling is ongoing. A passive RE mitigation coil designed to drive stochastic RE losses is being considered and COMSOL modelling predicts peak normalized fields at the plasma of order $10^{-2}$ that rises linearly with a change in the plasma current. Massive material injection is planned to reduce the disruption loading. A data-driven approach to predict an oncoming disruption and trigger mitigation is discussed.
A multichannel calorimeter system is designed and constructed which is capable of delivering single-shot and broad-band spectral measurement of terahertz (THz) radiation generated in intense laser–plasma interactions. The generation mechanism of backward THz radiation (BTR) is studied by using the multichannel calorimeter system in an intense picosecond laser–solid interaction experiment. The dependence of the BTR energy and spectrum on laser energy, target thickness and pre-plasma scale length is obtained. These results indicate that coherent transition radiation is responsible for the low-frequency component (${<}$1 THz) of BTR. It is also observed that a large-scale pre-plasma primarily enhances the high-frequency component (${>}$3 THz) of BTR.
Extensive insecticide use has led to the resistance of mosquitoes to these insecticides, posing a major barrier to mosquito control. Previous Solexa high-throughput sequencing of Culex pipiens pallens in the laboratory has revealed that the abundance of a novel microRNA (miRNA), miR-13664, was higher in a deltamethrin-sensitive (DS) strain than a deltamethrin-resistant (DR) strain. Real-time quantitative PCR revealed that the miR-13664 transcript level was lower in the DR strain than in the DS strain. MiR-13664 oversupply in the DR strain increased the susceptibility of these mosquitoes to deltamethrin, whereas inhibition of miR-13664 made the DS strain more resistant to deltamethrin. Results of bioinformatic analysis, quantitative reverse-transcriptase polymerase chain reaction, luciferase assay and miR mimic/inhibitor microinjection revealed CpCYP314A1 to be a target of miR-13664. In addition, downregulation of CpCYP314A1 expression in the DR strain reduced the resistance of mosquitoes to deltamethrin. Taken together, our results indicate that miR-13664 could regulate deltamethrin resistance by interacting with CpCYP314A1, providing new insights into mosquito resistance mechanisms.
Giant electromagnetic pulses (EMP) generated during the interaction of high-power lasers with solid targets can seriously degrade electrical measurements and equipment. EMP emission is caused by the acceleration of hot electrons inside the target, which produce radiation across a wide band from DC to terahertz frequencies. Improved understanding and control of EMP is vital as we enter a new era of high repetition rate, high intensity lasers (e.g. the Extreme Light Infrastructure). We present recent data from the VULCAN laser facility that demonstrates how EMP can be readily and effectively reduced. Characterization of the EMP was achieved using B-dot and D-dot probes that took measurements for a range of different target and laser parameters. We demonstrate that target stalk geometry, material composition, geodesic path length and foil surface area can all play a significant role in the reduction of EMP. A combination of electromagnetic wave and 3D particle-in-cell simulations is used to inform our conclusions about the effects of stalk geometry on EMP, providing an opportunity for comparison with existing charge separation models.
The triplite LiFeSO4F displays both the highest potential ever reported for an Fe-based compound, as well as a comparable specific energy with that of popular LiFePO4. The synthesis is still a challenge because the present approaches are connected with long time, special equipments or organic reagents, etc. In this work, the triplite LiFeSO4F powder was synthesized through an ambient two-step solid-state route. The reaction process and phase purity were analyzed, coupled with structure refinement and electrochemical test.
Litter size has a great impact on the profit of swine producers. Uterine development is an important determinant of reproduction efficiency and could hence affect litter size. Chinese Erhualian pig is one of the most prolific breeds in the world, even though large phenotypic variation in litter size was observed within Erhualian sows. To dissect the genetic basis of the phenotypic variation, we herein conducted genome-wide association studies for total number born and number born alive (NBA) of Erhualian sows. In total, one significant single nucleotide polymorphism (SNP) (P<1.78e−06) and 11 suggestive SNPs (P<3.57e−05) were identified on 10 chromosomes, confirming seven previously reported quantitative trait loci (QTL) and uncovering six QTL for litter size or uterus length. One locus on Sus scrofa chromosome (SSC) 13 (79.28 to 90.43 Mb) harbored a cluster of suggestive SNPs associated with multiparous NBA. The SNP (rs81447100) within this region was confirmed to be significantly (P<0.05) associated with litter size in Erhualian (n=313), Sutai (n=173) and Yorkshire (n=488) populations. Retinol binding protein 2 and retinol binding protein 1 functionally related to the development of uterus were located in a region of 2 Mb around rs81447100. Moreover, four genes related to embryo implantation and development were also detected around other significant SNPs. Taken together, our findings provide a potential marker (rs81447100) for the genetic improvement of litter size not only in Chinese Erhualian pigs but also in European commercial pig breeds like Yorkshire, and would facilitate the final identification of causative variant(s) underlying the effect of SSC13 QTL on litter size.
An outbreak of acute hepatitis recently occurred in a nursing home in Zhejiang Province, China. The objectives of this study were to confirm the outbreak and identify the aetiology, source and transmission patterns. All residents and staff in or near the nursing home during the period from 1 October 2014 to 21 May 2015 were investigated regarding hygiene and for epidemiological information including water and food (eating meat especially pork products). Serum and stool specimens were collected for detection of hepatitis E virus (HEV) antibodies using ELISA and RNA using RT–PCR. Samples that were RNA positive were genotyped. Of 185 senior residents and 24 staff in the nursing home, there were 37 laboratory-confirmed cases during the outbreak. Of these cases, 12 patients (three deaths) were symptomatic with jaundice, a common clinical symptom for hepatitis E infection. HEV strains were isolated from three cases and they formed a single cluster within genotype 4d. A case-control study was conducted to investigate potential risk factors for the outbreak and the results revealed that cases more often washed their dishes and rinsed their mouths using tap water than the controls (P < 0·05). Based on hygiene investigation and meteorological information, it is likely that HEV-infected sewage and faeces contaminated the water network on rainy days. Collectively, these results suggest that the outbreak of HEV genotype 4 infection was most likely caused by contaminated tap water rather than food.
Much progress has been made in recent years towards understanding how early-type galaxies (ETGs) form and evolve. SAURON (Bacon et al. 2001) integral-field spectroscopy from the ATLAS3D survey (Cappellari et al. 2011) has suggested that less massive ETGs are linked directly to spirals, whereas the most massive objects appear to form from a series of merging and accretion events (Cappellari et al. 2013). However, the ATLAS3D data typically only extends to about one half-light radius (or effective radius, Re), making it unclear if this picture is truly complete.
Association mapping based on linkage disequilibrium (LD) is a promising tool to identify genes responsible for quantitative variations underlying complex traits. The present paper presents an association mapping panel consisting of 172 upland cotton (Gossypium hirsutum L.) accessions. The panel was phenotyped for five cotton plant architecture traits across multiple environments and genotyped using 386 simple sequence repeat (SSR) markers. Of these markers, 101 polymorphic SSR markers were used in the final analysis. There were abundant phenotypic variations within this germplasm panel and a total of 267 alleles ranging from two to seven per locus were identified in all collections. The threshold of LD decay was set to r2 = 0·1 and 0·2, and the genome-wide LD extended up to about 13–14 and 6–7 cM, respectively, providing the potential for association mapping of agronomically important traits in upland cotton. A total of 66 marker–trait associations were detected based on a mixed linear model, of which 35 were found in more than one environment. The favourable alleles from 35 marker loci can be used in marker-assisted selection of target traits. Both the synergistic alleles and the negative alleles for some traits, especially plant height and fruit branch angle, can be utilized in plant architecture breeding programmes according to specific breeding objectives.
Fertilizer application can play an important role in soil organic carbon (SOC) retention and dynamics. The mechanisms underlying long-term accumulation and protection of SOC in intensive maize cropping systems, however, have not been well documented for cool high-latitude rainfed areas. Based on a 23-year fertilization experiment under a continuous maize cropping system at Gongzhuling, Jilin Province, China, the effects of fertilization regimes on SOC content and soil aggregate-associated carbon (C) composition were investigated. Results showed that, within the 0–1·0 m soil profile, SOC contents decreased significantly with soil depth in all treatments. In the topsoil layer (0–0·2 m), SOC concentrations in balanced inorganic fertilizers plus farmyard manure (MNPK), fallow system (FAL) and balanced inorganic fertilizers plus maize straw residue (SNPK) treatments were significantly greater than initial levels by 61·0, 34·1 and 20·1%, respectively. The MNPK and SNPK treatments increased SOC content by 50·7 and 12·4% compared to the unfertilized control in the topsoil layer, whereas no significant differences were found between balanced inorganic nitrogen, phosphorus and potassium fertilizers (NPK) and the unfertilized control treatment. There were no significant differences in aggregate-size distribution among the unfertilized control, NPK and MNPK treatments, whereas the SNPK treatment significantly enhanced the formation of micro-aggregates (53–250 μm) and decreased the formation of silt+clay aggregates (<53 μm) compared to the unfertilized control, NPK and MNPK treatments. Moreover, SOC concentrations in all aggregate fractions in the MNPK treatment were the highest among treatments. Furthermore, the MNPK treatment significantly increased SOC stock in micro- and silt+clay aggregates, which may slow down C decomposition in the soil. These results indicate that long-term manure amendment can benefit SOC sequestration and stability in the black soil of Northeast China.
Parrots are one of the most popular pet birds in China, and can harbour Chlamydia which has significance for human and animal health. We investigated, by indirect haemagglutination assay, the seroprevalence of Chlamydia infection in four species of parrots, namely budgerigars (Melopsittacus undulatus), lovebirds (Agapornis sp.), cockatiels (Nymphicus hollandicus) and Alexandrine parakeets (Psittacula eupatria) that were collected from Weifang and Beijing cities, North China and explored the association between potential risk factors and chlamydial seropositivity. We further determined the genotype of Chlamydia in 21 fresh faecal samples based on the ompA sequence by reconstruction of phylogenetic relationships. Of the 311 parrots examined, 35·37% (95% confidence interval 30·06–40·68) were seropositive, and species, gender, age, season and geographical location were identified as risk factors. Two PCR-positive samples represented Chlamydia psittaci genotype A. The occurrence of C. psittaci genotype A in the droppings of two pet parrots in China suggests potential environmental contamination with Chlamydiaceae and may raise a public health concern.
Gattini and CSTAR have been installed at Dome A, Antarctica, which provide time-series photometric data for a large number of pulsating variable stars. We present the study for several variable stars with the data collected with the two facilities in 2009 to demonstrate the scientific potential of observations from Dome A for asteroseismology.
The behavioral and psychological symptoms associated with dementia (BPSD) can be burdensome to informal/family caregivers, negatively affecting mental health and expediting the institutionalization of patients. Because the dementia patient–caregiver relationship extends over long periods of time, it is useful to examine how BPSD impact caregiver depressive symptoms at varied stages of illness. The goal of this study was to assess the association of BPSD that occur during early stage dementia with subsequent caregiver depressive symptoms.
Methods:
Patients were followed from the early stages of dementia every six months for up to 12 years or until death (n = 160). Caregiver symptoms were assessed on average 4.5 years following patient's early dementia behaviors. A generalized estimating equation (GEE) extension of the logistic regression model was used to determine the association between informal caregiver depressive symptoms and BPSD symptoms that occurred at the earliest stages dementia, including those persistent during the first year of dementia diagnosis.
Results:
BPSD were common in early dementia. None of the individual symptoms observed during the first year of early stage dementia significantly impacted subsequent caregiver depressive symptoms. Only patient agitation/aggression was associated with subsequent caregiver depressive symptoms (OR = 1.76; 95% CI = 1.04–2.97) after controlling for concurrent BPSD, although not in fully adjusted models.
Conclusions:
Persistent agitation/aggression early in dementia diagnosis may be associated with subsequent depressive symptoms in caregivers. Future longitudinal analyses of the dementia caregiving relationship should continue to examine the negative impact of persistent agitation/aggression in the diagnosis of early stage dementia on caregivers.
This study aimed to determine the seroprevalence of Kaposi's sarcoma-associated herpesvirus (KSHV) and related factors in men who have sex with men (MSM) in China. A total of 208 subjects were recruited from eastern China from 2008 to 2009. Plasma samples were collected and screened for KSHV, HIV and syphilis. Overall, KSHV seroprevalence was 32·7% in the subjects. About 92·7% of subjects reported having ever had anal sex with a man, of whom 67·8% had receptive anal sex and 77·9% had insertive anal sex. About 93·1% of the study participants reported having had oral sex with a man, of whom 76·0% had receptive oral sex and 56·7% had insertive oral sex. KSHV seropositivity was independently associated with receptive anal sex [odds ratio (OR) 2·68, 95% confidence interval (CI) 1·15–6·23], syphilis (OR 3·25, 95% CI 1·56–6·76) and HSV-2 infection (OR 2·40, 95% CI 1·09–5·26). KSHV infection is highly prevalent and is probably sexually transmitted among MSM in eastern China.
The current trends in stimulated Brillouin scattering and optical phase conjugation are overviewed. This report is formed by the selected papers presented in the “Fifth International Workshop on stimulated Brillouin scattering and phase conjugation 2010” in Japan. The nonlinear properties of phase conjugation based on stimulated Brillouin scattering and photo-refraction can compensate phase distortions in the high power laser systems, and they will also open up potentially novel laser technologies, e.g., phase stabilization, beam combination, pulse compression, ultrafast pulse shaping, and arbitrary waveform generation.
We consider a new kind of simple repairable system consisting of a repairman with multiple delayed-vacation strategy. A common technique in reliability studies is to substitute the steady-state reliability indexes for instantaneous ones because the dynamic solution of the system is difficult or even impossible to obtain. However, this substitution is not always valid. Therefore, it is important to study the existence, uniqueness and expression for the system’s dynamic solution, and to discuss the system’s stability. The purpose of this paper is threefold: to study the uniqueness and existence of the dynamic solution, and its expression, using C0-semigroup theory; to discuss the exponential stability of the system by analysing the spectral distribution and quasi-compactness of the system operator; to derive some reliability indexes of the system from an eigenfunction point of view, which is different from the traditional Laplace transform technique, and present a profit analysis to determine the optimal vacation time in order to achieve the maximum system profit.