We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
The COVID-19 pandemic has presented a unique opportunity to understand how real-time pathogen genomics can be used for large-scale outbreak investigations. On 12 August 2021, the Australian Capital Territory (ACT) detected an incursion of the SARS-CoV-2 Delta (B.1.617.2) variant. Prior to this date, SARS-CoV-2 had been eliminated locally since 7 July 2020. Several public health interventions were rapidly implemented in response to the incursion, including a territory-wide lockdown and comprehensive contact tracing. The ACT has not previously used pathogen genomics at a population level in an outbreak response; therefore, this incursion also presented an opportunity to investigate the utility of genomic sequencing to support contact tracing efforts in the ACT. Sequencing of >75% of the 1793 laboratory-confirmed cases during the 3 months following the initial notification identified at least 13 independent incursions with onwards spread in the community. Stratification of cases by genomic cluster revealed that distinct cohorts were affected by the different incursions. Two incursions resulted in most of the community transmission during the study period, with persistent transmission in vulnerable sections of the community. Ultimately, both major incursions were successfully mitigated through public health interventions, including COVID-19 vaccines. The high rates of SARS-CoV-2 sequencing in the ACT and the relatively small population size facilitated detailed investigations of the patterns of virus transmission, revealing insights beyond those gathered from traditional contact tracing alone. Genomic sequencing was critical to disentangling complex transmission chains to target interventions appropriately.
Outcrops of an ash bed at several localities in northern California and western Nevada belong to a single air-fall ash layer, the informally named Rockland ash bed, dated at about 400,000 yr B.P. The informal Rockland pumice tuff breccia, a thick, coarse, compound tephra deposit southwest of Lassen Peak in northeastern California, is the near-source equivalent of the Rockland ash bed. Relations between initial thickness of the Rockland ash bed and distances to eruptive source suggest that the eruption was at least as great as that of the Mazama ash from Crater Lake, Oregon. Identification of the Rockland tephra allows temporal correlation of associated middle Pleistocene strata of diverse facies in separate depositional basins. Specifically, marine, littoral, estuarine, and fluvial strata of the Hookton and type Merced formations correlate with fluvial strata of the Santa Clara Formation and unnamed alluvium of Willits Valley and the Hollister area, in northwestern and west-central California, and with lacustrine beds of Mohawk Valley, fluvial deposits of the Red Bluff Formation of the eastern Sacramento Valley, and fluvial and glaciofluvial deposits of Fales Hot Spring, Carson City, and Washoe Valley areas in northeastern California and western Nevada. Stratigraphic relations of the Rockland ash bed and older tephra layers in the Great Valley and near San Francisco suggest that the southern Great Valley emerged above sea level about 2 my ago, that its southerly outlet to the ocean was closed sometime after about 2 my ago, and that drainage from the Great Valley to the ocean was established near the present, northerly outlet in the vicinity of San Francisco Bay about 0.6 my ago.
Email your librarian or administrator to recommend adding this to your organisation's collection.