We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
State of the art CMOS devices have been scaled to such dimensions that we need take atomistic approach to understand their operation for nano-electronics. From a bottoms-up perspective, the smallest functional element within a nano-device would be a single (dopant) atom itself. Control and understanding of the eigenenergies and wavefunctions of a single dopant in Si is a key ingredient for device technology beyond-CMOS like quantum-information processing. Here, we will discuss the eigenlevels of a single As donor in a three terminal configuration. The donor is incorporated in the channel of prototype transistors called FinFETs. The measured eigenlevels are shown to consist of levels associated with the donors Coulomb potential, levels associated with a triangular well at the gate interface and hybridized combinations of the two. The theoretical framework in which we describe this system (NEMO-3D) is based on a tight-binding approximation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.