We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Natural infection by Trichinella sp. has been reported in humans and more than 150 species of animals, especially carnivorous and omnivorous mammals. Although the presence of Trichinella sp. infection in wild boars (Sus scrofa) has been documented worldwide, limited information is known about Trichinella circulation in farmed wild boars in China. This study intends to investigate the prevalence of Trichinella sp. in farmed wild boars in China. Seven hundred and sixty-one (761) muscle samples from farmed wild boars were collected in Jilin Province of China from 2017 to 2020. The diaphragm muscles were examined by artificial digestion method. The overall prevalence of Trichinella in farmed wild boars was 0.53% [95% confidence interval (CI): 0.51–0.55]. The average parasite loading was 0.076 ± 0.025 larvae per gram (lpg), and the highest burden was 0.21 lpg in a wild boar from Fusong city. Trichinella spiralis was the only species identified by multiplex polymerase chain reaction. The 5S rDNA inter-genic spacer region of Trichinella was amplified and sequenced. The results showed that the obtained sequence (GenBank accession number: OQ725583) shared 100% identity with the T. spiralis HLJ isolate (GenBank accession number: MH289505). Since the consumption of farmed wild boars is expected to increase in the future, these findings highlight the significance of developing exclusive guidelines for the processing of slaughtered farmed wild boar meat in China.
Investigations are conducted on the effect of wall proximity on the flow around a cylinder under an axial magnetic field, using the electrical potential probe technology to measure the velocity of liquid metal flow. The study focused on the impact of the inlet velocity of the fluid, the magnetic field and wall proximity on the characteristics of velocity fields, particularly on the vortex-shedding mode. Based on different magnitudes of the magnetic field and the distance from the cylinder to the duct wall, three types of vortex-shedding modes are identified, (I) shear layer oscillation state, (II) quasi-two-dimensional vortex-shedding states and (III) transition of the magnetohydrodynamic to hydrodynamic Kármán street. The transitions between these modes are analysed in detail. The experimental results show that the weak wall-proximity effect leads to the formation of the Kármán vortex street, while a reverse Kármán vortex street and secondary vortices emerge under a strong wall-proximity effect. It is noticed that the Kelvin–Helmholtz instability drives vortex shedding under regime I, leading to an increase in the Strouhal number (St) with stronger magnetic fields. Additionally, under a strong axial magnetic field, the wall-proximity effect (‘Shercliff layer effect’) promotes the instability of shear layers on both sides of the cylinder. These unique coupling effects are validated by variations in modal coefficients and energy proportions under different vortex-shedding regimes using the proper orthogonal decomposition method.
This research aimed to print realistically detailed and magnified three-dimensional models of the inner ear, specifically focusing on visualising its complex labyrinth structure and functioning simulation.
Methods
Temporal bone computed-tomography data were imported into Mimics software to construct an initial three-dimensional inner-ear model. Subsequently, the model was amplified and printed with precision using a three-dimensional printer. Five senior attending physicians evaluated the printed model using a Likert scale to gauge its morphological accuracy, clinical applicability and anatomical teaching value.
Results
The printed inner-ear model effectively demonstrated the intricate internal structure. All five physicians agreed that the model closely resembled the real inner ear in shape and structure, and simulated certain inner-ear functions. The model was considered highly valuable for understanding anatomical structure and disorders.
Conclusion
The three-dimensionally printed inner-ear model is highly simulated and provides a valuable visual tool for studying inner-ear anatomy and clinical teaching, benefiting otologists.
Echinococcus shiquicus is peculiar to the Qinghai–Tibet plateau of China. Research on this parasite has mainly focused on epidemiological surveys and life cycle studies. So far, limited laboratory studies have been reported. Here, experimental infection of E. shiquicus metacestode in BALB/c mice and Mongolian jirds (Meriones unguiculatus) was carried out to establish alternative laboratory animal models. Intraperitoneal inoculation of metacestode material containing protoscoleces (PSCs) obtained from infected plateau pikas were conducted on BALB/c mice. Furthermore, metacestode material without PSCs deriving from infected BALB/c mice was intraperitoneally inoculated to Mongolian jirds. Experimental animals were dissected for macroscopic and histopathological examination. The growth of cysts in BALB/c mice was infiltrative, and they invaded the murine entire body. Most of the metacestode cysts were multicystic, but a few were unilocular. The cysts contained sterile vesicles, which had no PSCs. The metacestode materials were able to successfully infect new mice. In the jirds model, E. shiquicus cysts were typically formed freely in the peritoneal cavity; the majority of these cysts were free while a small portion adhered loosely to nearby organs. The proportion of fertile cysts was high, and contained many PSCs. The PSCs produced in Mongolian jirds also successfully infected new ones, which confirms that jirds can serve as an alternative experimental intermediate host. In conclusion, a laboratory animal infection was successfully established for E. shiquicus using BALB/c mice and Mongolian jirds. These results provide new models for the in-depth study of Echinococcus metacestode survival strategy, host interactions and immune escape mechanism.
To establish optimal gestational weight gain (GWG) in Chinese pregnant women by Chinese-specific BMI categories and compare the new recommendations with the Institute of Medicine (IOM) 2009 guidelines.
Design:
Multicentre, prospective cohort study. Unconditional logistic regression analysis was used to evaluate the OR, 95 % CI and the predicted probabilities of adverse pregnancy outcomes. The optimal GWG range was defined as the range that did not exceed a 1 % increase from the lowest predicted probability in each pre-pregnancy BMI group.
Setting:
From nine cities in mainland China.
Participants:
A total of 3731 women with singleton pregnancy were recruited from April 2013 to December 2014.
Results:
The optimal GWG (ranges) by Chinese-specific BMI was 15·0 (12·8–17·1), 14·2 (12·1–16·4) and 12·6 (10·4–14·9) kg for underweight, normal weight and overweight pregnant women, respectively. Inappropriate GWG was associated with several adverse pregnancy outcomes. Compared with women gaining weight within our proposed recommendations, women with excessive GWG had higher risk for macrosomia, large for gestational age and caesarean section, whereas those with inadequate GWG had higher risk for low birth weight, small for gestational age and preterm delivery. The comparison between our proposed recommendations and IOM 2009 guidelines showed that our recommendations were comparable with the IOM 2009 guidelines and could well predict the risk of several adverse pregnancy outcomes.
Conclusions:
Inappropriate GWG was associated with higher risk of several adverse pregnancy outcomes. Optimal GWG recommendations proposed in the present study could be applied to Chinese pregnant women.
Salicylic acid (SA), a phytohormone, has been considered to be a key regulator mediating plant defence against pathogens. It is still vague how SA activates plant defence against herbivores such as chewing and sucking pests. Here, we used an aphid-susceptible wheat variety to investigate Sitobion avenae response to SA-induced wheat plants, and the effects of exogenous SA on some defence enzymes and phenolics in the plant immune system. In SA-treated wheat seedlings, intrinsic rate of natural increase (rm), fecundity and apterous rate of S. avenae were 0.25, 31.4 nymphs/female and 64.4%, respectively, and significantly lower than that in the controls (P < 0.05). Moreover, the increased activities of phenylalanine-ammonia-lyase, polyphenol oxidase (PPO) and peroxidase in the SA-induced seedlings obviously depended on the sampling time, whereas activities of catalase and 4-coumarate:CoA ligase were suppressed significantly at 24, 48 and 72 h in comparison with the control. Dynamic levels of p-coumaric acid at 96 h, caffeic acid at 24 and 72 h and chlorogenic acid at 24, 48 and 96 h in wheat plants were significantly upregulated by exogenous SA application. Nevertheless, only caffeic acid content was positively correlated with PPO activity in SA-treated wheat seedlings (P = 0.031). These findings indicate that exogenous SA significantly enhanced the defence of aphid-susceptible wheat variety against aphids by regulating the plant immune system, and may prove a potential application of SA in aphid control.
Early childhood education has long-lasting influences on people, and an appropriate companion toy can play an essential role in children's brain development. This paper establishes a complete framework to guide the design of intelligent companion toys for preschool children from 2 to 6 years old, which is child-centered and environment-oriented. The design process is divided into three steps: requirement confirmation, the smart design before the sale, and the iterative update after the sale. This framework considers the characteristics of children and highlights the integration of human and artificial intelligence in design. A case study is provided to prove the superiority of the new framework. In addition to enriching the research on intelligent toy design, this paper also guides for practitioners to design smart toys and helps in children's cognitive development.
Cysticercosis caused by the metacestode larval stage of Taenia hydatigena formerly referred to as Cysticercus tenuicollis is a disease of veterinary importance that constitutes a significant threat to livestock production worldwide, especially in endemic regions due to condemnation of visceral organs and mortality rate of infected young animals. While the genetic diversity among parasites is found to be potentially useful in many areas of research including molecular diagnostics, epidemiology and control, that of T. hydatigena across the globe remains poorly understood. In this study, analysis of the mitochondrial DNA (mtDNA) of adult worms and larval stages of T. hydatigena isolated from dogs, sheep and a wild boar in China showed that the population structure consists of two major haplogroups with very high nucleotide substitutions involving synonymous and non-synonymous changes. Compared with other cestodes such as Echinococcus spp., the genetic variation observed between the haplogroups is sufficient for the assignment of major haplotype or genotype division as both groups showed a total of 166 point-mutation differences between the 12 mitochondrial protein-coding gene sequences. Preliminary analysis of a nuclear protein-coding gene (pepck) did not reveal any peculiar changes between both groups which suggests that these variants may only differ in their mitochondrial makeup.
The aim of the present study was to explore the influence of tea consumption on diabetes mellitus in the Chinese population. This multi-centre, cross-sectional study was conducted in eight sites from south, east, north, west and middle regions in China by enrolling 12 017 subjects aged 20–70 years. Socio-demographic and general information was collected by a standardised questionnaire. A standard procedure was used to measure anthropometric characteristics and to obtain blood samples. The diagnosis of diabetes was determined using a standard 75-g oral glucose tolerance test. In the final analysis, 10 825 participants were included and multiple logistic models and interaction effect analysis were applied for assessing the association between tea drinking with diabetes. Compared with non-tea drinkers, the multivariable-adjusted OR for newly diagnosed diabetes were 0·80 (95 % CI 0·67, 0·97), 0·88 (95 % CI 0·71, 1·09) and 0·86 (95 % CI 0·67, 1·11) for daily tea drinkers, occasional tea drinkers and seldom tea drinkers, respectively. Furthermore, drinking tea daily was related to decreased risk of diabetes in females by 32 %, elderly (>45 years) by 24 % and obese (BMI > 30 kg/m2) by 34 %. Moreover, drinking dark tea was associated with reduced risk of diabetes by 45 % (OR 0·55; 95 % CI 0·42, 0·72; P < 0·01). The results imply that drinking tea daily was negatively related to risk of diabetes in female, elderly and obese people. In addition, drinking dark tea was associated with decreased risk of type 2 diabetes mellitus.
The wake structure of an incompressible, conducting, viscous fluid past an electrically insulating sphere affected by a transverse magnetic field is investigated numerically over flow regimes including steady and unsteady laminar flows at Reynolds numbers up to 300. For a steady axisymmetric flow affected by a transverse magnetic field, the wake structure is deemed to be a double plane symmetric state. For a periodic flow, unsteady vortex shedding is first suppressed and transitions to a steady plane symmetric state and then to a double plane symmetric pattern. Wake structures in the range $210<Re\leqslant 300$ without a magnetic field have a symmetry plane. An angle $\unicode[STIX]{x1D703}$ exists between the orientation of this symmetry plane and the imposed transverse magnetic field. For a given transverse magnetic field, the final wake structure is found to be independent of the initial flow configuration with a different angle $\unicode[STIX]{x1D703}$. However, the orientation of the symmetry plane tends to be perpendicular to the magnetic field, which implies that the transverse magnetic field can control the orientation of the wake structure of a free-moving sphere and change the direction of its horizontal motion by a field–wake–trajectory control mechanism. An interesting ‘reversion phenomenon’ is found, where the wake structure of the sphere at a higher Reynolds number and a certain magnetic interaction parameter ($N$) corresponds to a lower Reynolds number with a lower $N$ value. Furthermore, the drag coefficient is proportional to $N^{2/3}$ for weak magnetic fields or to $N^{1/2}$ for strong magnetic fields, where the threshold value between these two regimes is approximately $N=4$.
When the Galileo number is below the first bifurcation, the instability and transition of a vertical ascension or the fall of a free sphere affected by a vertical magnetic field are investigated numerically. A compact model is used to explain that the magnetic field can destabilize the fluid–solid system. When the interaction parameter exceeds a critical value, the sphere trajectory is transitioned from a steady vertical trajectory to a steady oblique one. Furthermore, the trajectory will remain vertical at a sufficiently large magnetic field because of a double effect of the magnetic field on the fluid–solid system. Under the influence of an external vertical magnetic field, four wake patterns at the rear of the sphere are found and the physical behaviour of the free sphere is independent of the density ratio. The wake or trajectory of the free sphere is only determined by the Galileo number $G$ and the interaction parameter $N$. A close relationship between the streamwise vorticity and the sphere motion is found. An interesting ‘agglomeration phenomenon’ is also found, which shows that the vertical velocities are agglomerated into a point for a certain magnetic field regardless of the Galileo number and satisfy a scaling law $V_{z}\sim N^{-1/4}$, when $N>1$. The principal results of the present work are summarized in a map of regimes in the $\{G,N\}$ plane.
The wake structure and transition process of an incompressible viscous fluid flow past a sphere affected by an imposed streamwise magnetic field are investigated numerically over flow regimes that include steady and unsteady laminar flows at Reynolds numbers up to 300. For cases without a magnetic field, a subregion with the existence of a limit cycle is found in the range $210<Re<270$. The point of division is between $Re=220$ and $Re=230$. For cases with a streamwise magnetic field, five wake patterns are the steady axisymmetric wake with an attached separation bubble, the steady plane symmetric wake with a small spiral dismissed, the steady plane symmetric wake with a limit cycle, the steady plane symmetric wake with a small spiral fed by the upstream fluid and the unsteady plane symmetric wake with a wave-like oscillation or vortex shedding. Under the influence of an imposed streamwise magnetic field, the wake will be transitioned to various patterns. An interesting ‘reversion phenomenon’, which describes the topological structure behind a sphere with a higher Reynolds number and a certain interaction parameter which corresponds to a lower Reynolds number case with a certain interaction parameter or a much lower Reynolds number case without a magnetic field, is also found. The principal results of the present work are summarized in a map of regimes in the $\{N,Re\}$ plane.
This is a case-control study to investigate the prevalence, characteristics, and risk factors of pain in patients with Parkinson's disease (PD).
Methods:
A total of 200 PD patients from eastern China were enrolled in our study. Accordingly, 200 healthy elderly adults were recruited as controls. The characteristics of pain were collected by using the Visual Analog Scale, Brief Pain Inventory (BPI), SF-36 Bodily Pain Scale, Unified Parkinson's Disease Rating Scale, Hoehn–Yahr Scale (H-Y), Hamilton Depression Scale, and Leeds Assessment of Neuropathic Symptoms and Signs.
Results:
Of the 200 PD patients, pain was complained by 106 patients (53%). According to the SF-36 Bodily Pain Scale, pain morbidity in PD patients was significantly higher than in the control group. The average pain during last 24 h measured by the BPI was 2.67. About 76% of PD patients were found to have one pain type, 21.7% were having two pain types, and 1.9% had three pain types. Further, 69.8% of these patients were presented with musculoskeletal pain, 4.7% with dystonic pain, 22.6% with radicular-neuropathic pain, 20.8% with central neuropathic pain, and 9.4% with akathisia pain. The onset age and depression were the most significant predictors of pain in PD patients (p < 0.05). However, there was no significant association between pain and gender, age, disease duration, or severity of the disease. Only 5.7% of PD patients with pain received treatment in this study.
Conclusions:
Pain is frequent and disabling, independent of demographic and clinical variables, and is significantly more common in PD patients.
Few studies have explored the relationship between dietary patterns and the risk of gestational diabetes mellitus (GDM). Evidence from non-Western areas is particularly lacking. In the present study, we aimed to examine the associations between dietary patterns and the risk of GDM in a Chinese population. A total of 3063 pregnant Chinese women from an ongoing prospective cohort study were included. Data on dietary intake were collected using a FFQ at 24–27 weeks of gestation. GDM was diagnosed using a 75 g, 2 h oral glucose tolerance test. Dietary patterns were determined by principal components factor analysis. A log-binomial regression model was used to examine the associations between dietary pattern and the risk of GDM. The analysis identified four dietary patterns: vegetable pattern; protein-rich pattern; prudent pattern; sweets and seafood pattern. Multivariate analysis showed that the highest tertile of the vegetable pattern was associated with a decreased risk of GDM (relative risk (RR) 0·79, 95 % CI 0·64, 0·97), compared with the lowest tertile, whereas the highest tertile of the sweets and seafood pattern was associated with an increased risk of GDM (RR 1·23, 95 % CI 1·02, 1·49). No significant association was found for either the protein-rich or the prudent pattern. The protective effect of a high vegetable pattern score was more evident among women who had a family history of diabetes (P for interaction = 0·022). These findings suggest that the vegetable pattern was associated with a decreased risk of GDM, while the sweets and seafood pattern was associated with an increased risk of GDM. These findings may be useful in dietary counselling during pregnancy.
Plant height is important for crop yield improvement. In this study, a dwarf mutant, Gmdwarf1, was screened from a γ-ray-treated soybean population. Compared with the wild type, the mutant exhibited later germination, smaller and darker green leaves, and less-elongated shoots. Genome-wide transcriptome detection through RNA-seq analysis revealed that not only gibberellin-related genes but many other genes involved in hormone biosynthetic pathways were also significantly influenced in the mutant. We presumed that Gmdwarf1 might play essential roles in the plant hormone pathways. Future functional analysis of this dwarf mutant would help us to understand the underlying mechanisms and be beneficial for improving soybean yield.
Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae) is an important natural enemy of many species of lepidopterous pests. The effects of heat stress temperature (33, 36, and 39 °C), duration of exposure (2, 4, 6, and 8 h), and developmental stage during exposure (embryo-first instar larvae, second instar larvae, prepupae, and pupae) on the development and reproduction of parasitoid T. bactrae were investigated in the laboratory. When exposed to 39 °C for 8 h during pupal stage, only 19.90% adults emerged from host eggs, and more than 14% were deformed (wings were folded or incomplete). Parasitoid females exposed to 39 °C for 8 h as prepupae only lived for 1.45 days and parasitized about 23.5 host eggs. Moreover, life-table parameters of T. bactrae were also influenced by exposure to heat stress temperatures during each preimaginal developmental stage. Based on these results, we propose that T. bactrae is susceptible to high temperatures, especially at 39 °C. Thus, this parasitoid may be more effectively controlling lepidopterous pests during cooler weather conditions.
This paper presents numerical simulations to study the heating of a solid target under a proton beam pulse interaction. The target is heated by the proton beam pulse with particle energy Eb, intensity N and focal radius rb of transverse Gaussian distribution, with a fixed pulse time 10 ps. The dynamics of target and beam ions are described by a classical hydrodynamic model and the target electrons are described by the quantum hydrodynamic model. Numerical simulations are carried out by employing the two dimensional flux-corrected transport methods. The target is heated to 0.5−5 eV, therefore, warm dense matter is created in the heated target region on a picosecond time scale.
Two-dimensional particle-in-cell simulations are performed to investigate the propagation of low energy continuous ion beams through background plasmas. It is shown that the continuous ion beam can be modulated into periodic short beam pulses by the induced wakefield, which can be adopted as a method to produce ultrashort ion beam pulses. Furthermore, the transport of the continuous ion beam in plasma with density gradient in the beam propagation direction is proposed and an enhanced longitudinal compression by density gradient is found due to the phase lock of ion pulses in the focusing regions of wakefield and reduced heating of plasma electrons.
This paper presents numerical simulations to study the heating of a two-dimensional (2D) solid target under an ion cluster interaction. 2D quantum hydrodynamic (QHD) model is employed for the heating of solid target to warm dense matter on a picosecond time scale. A Gaussian cluster is used to uniformly heat the solid target to a temperature of several eV. The density and temperature of the target are calculated by a full self-consistent treatment of the QHD formalisms and the Poisson's equation. The technique described in this paper provides a method for creating uniformly heated strongly coupled plasma states.
We use a two-dimensional particle-in-cell simulation to investigate the dynamic polarization and stopping power for an ion beam propagating through a two-component plasma, which is simultaneously irradiated by a strong laser pulse. Compared to the laser-free case, we observe a reduction in the instantaneous stopping power that initially follows the shape of the laser pulse and becomes particularly large as the laser frequency approaches the plasma electron frequency. We attribute this large reduction in the ion stopping power to an increase in plasma temperature due to the energy absorbed in the plasma from the laser pulse through the process of wave heating. In addition, dynamic polarization of the plasma by the ion is found to be strongly modulated by the laser field.