We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Research is only beginning to shape our understanding of eating disorders as metabolic-psychiatric illnesses. How eating disorders (EDs) are classified is essential to future research for understanding the etiology of these severe illnesses and both developing and tailoring effective treatments. The gold standard for classification for research and diagnostic purposes has primarily been and continues to be the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). With the reconceptualization of EDs comes new challenges of considering how EDs are classified to reflect clinical reality, prognosis and lived experience. In this article, we explore the DSM-5 method of categorical classification and how it may not accurately represent the fluidity in which EDs present themselves. We discuss alternative methods of conceptualizing EDs, and their relevance and implications for genetic research.
Increasing daylight exposure might be a simple way to improve mental health. However, little is known about daylight-symptom associations in depressive disorders.
Methods
In a subset of the Australian Genetics of Depression Study (N = 13,480; 75% female), we explored associations between self-reported number of hours spent in daylight on a typical workday and free day and seven symptom dimensions: depressive (overall, somatic, psychological); hypo-manic-like; psychotic-like; insomnia; and daytime sleepiness. Polygenic scores for major depressive disorder (MDD); bipolar disorder (BD); and schizophrenia (SCZ) were calculated. Models were adjusted for age, sex, shift work status, employment status, season, and educational attainment. Exploratory analyses examined age-stratified associations (18–24 years; 25–34 years; 35–64 years; 65 and older). Bonferroni-corrected associations (p < 0.004) are discussed.
Results
Adults with depression reported spending a median of one hour in daylight on workdays and three hours on free days. More daylight exposure on workdays and free days was associated with lower depressive (overall, psychological, somatic) and insomnia symptoms (p’s<0.001), but higher hypo-manic-like symptoms (p’s<0.002). Genetic loading for MDD and SCZ were associated with less daylight exposure in unadjusted correlational analyses (effect sizes were not meaningful). Exploratory analyses revealed age-related heterogeneity. Among 18–24-year-olds, no symptom dimensions were associated with daylight. By contrast, for the older age groups, there was a pattern of more daylight exposure and lower insomnia symptoms (p < 0.003) (except for 25–34-year-olds on free days, p = 0.019); and lower depressive symptoms with more daylight on free days, and to some extent workdays (depending on the age-group).
Conclusions
Exploration of the causal status of daylight in depression is warranted.
Genetically informative twin studies have consistently found that individual differences in anxiety and depression symptoms are stable and primarily attributable to time-invariant genetic influences, with non-shared environmental influences accounting for transient effects.
Methods
We explored the etiology of psychological and somatic distress in 2279 Australian twins assessed up to six times between ages 12–35. We evaluated autoregressive, latent growth, dual-change, common, and independent pathway models to identify which, if any, best describes the observed longitudinal covariance and accounts for genetic and environmental influences over time.
Results
An autoregression model best explained both psychological and somatic distress. Familial aggregation was entirely explained by additive genetic influences, which were largely stable from ages 12 to 35. However, small but significant age-dependent genetic influences were observed at ages 20–27 and 32–35 for psychological distress and at ages 16–19 and 24–27 for somatic distress. In contrast, environmental influences were predominantly transient and age-specific.
Conclusions
The longitudinal trajectory of psychological distress from ages 12 to 35 can thus be largely explained by forward transmission of a stable additive genetic influence, alongside smaller age-specific genetic innovations. This study addresses the limitation of previous research by exhaustively exploring alternative theoretical explanations for the observed patterns in distress symptoms over time, providing a more comprehensive understanding of the genetic and environmental factors influencing psychological and somatic distress across this age range.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
Genetic vulnerability to mental disorders has been associated with coronavirus disease-19 (COVID-19) outcomes. We explored whether polygenic risk scores (PRSs) for several mental disorders predicted poorer clinical and psychological COVID-19 outcomes in people with pre-existing depression.
Methods
Data from three assessments of the Australian Genetics of Depression Study (N = 4405; 52.2 years ± 14.9; 76.2% females) were analyzed. Outcomes included COVID-19 clinical outcomes (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] infection and long COVID, noting the low incidence of COVID-19 cases in Australia at that time) and COVID-19 psychological outcomes (COVID-related stress and COVID-19 burnout). Predictors included PRS for depression, bipolar disorder, schizophrenia, and anxiety. The associations between these PRSs and the outcomes were assessed with adjusted linear/logistic/multinomial regressions. Mediation (N = 4338) and moderation (N = 3326) analyses were performed to explore the potential influence of anxiety symptoms and resilience on the identified associations between the PRSs and COVID-19 psychological outcomes.
Results
None of the selected PRS predicted SARS-CoV-2 infection or long COVID. In contrast, the depression PRS predicted higher levels of COVID-19 burnout. Anxiety symptoms fully mediated the association between the depression PRS and COVID-19 burnout. Resilience did not moderate this association.
Conclusions
A higher genetic risk for depression predicted higher COVID-19 burnout and this association was fully mediated by anxiety symptoms. Interventions targeting anxiety symptoms may be effective in mitigating the psychological effects of a pandemic among people with depression.
It is well established that there is a substantial genetic component to eating disorders (EDs). Polygenic risk scores (PRSs) can be used to quantify cumulative genetic risk for a trait at an individual level. Recent studies suggest PRSs for anorexia nervosa (AN) may also predict risk for other disordered eating behaviors, but no study has examined if PRS for AN can predict disordered eating as a global continuous measure. This study aimed to investigate whether PRS for AN predicted overall levels of disordered eating, or specific lifetime disordered eating behaviors, in an Australian adolescent female population.
Methods
PRSs were calculated based on summary statistics from the largest Psychiatric Genomics Consortium AN genome-wide association study to date. Analyses were performed using genome-wide complex trait analysis to test the associations between AN PRS and disordered eating global scores, avoidance of eating, objective bulimic episodes, self-induced vomiting, and driven exercise in a sample of Australian adolescent female twins recruited from the Australian Twin Registry (N = 383).
Results
After applying the false-discovery rate correction, the AN PRS was significantly associated with all disordered eating outcomes.
Conclusions
Findings suggest shared genetic etiology across disordered eating presentations and provide insight into the utility of AN PRS for predicting disordered eating behaviors in the general population. In the future, PRSs for EDs may have clinical utility in early disordered eating risk identification, prevention, and intervention.
Diagnostic criteria for major depressive disorder allow for heterogeneous symptom profiles but genetic analysis of major depressive symptoms has the potential to identify clinical and etiological subtypes. There are several challenges to integrating symptom data from genetically informative cohorts, such as sample size differences between clinical and community cohorts and various patterns of missing data.
Methods
We conducted genome-wide association studies of major depressive symptoms in three cohorts that were enriched for participants with a diagnosis of depression (Psychiatric Genomics Consortium, Australian Genetics of Depression Study, Generation Scotland) and three community cohorts who were not recruited on the basis of diagnosis (Avon Longitudinal Study of Parents and Children, Estonian Biobank, and UK Biobank). We fit a series of confirmatory factor models with factors that accounted for how symptom data was sampled and then compared alternative models with different symptom factors.
Results
The best fitting model had a distinct factor for Appetite/Weight symptoms and an additional measurement factor that accounted for the skip-structure in community cohorts (use of Depression and Anhedonia as gating symptoms).
Conclusion
The results show the importance of assessing the directionality of symptoms (such as hypersomnia versus insomnia) and of accounting for study and measurement design when meta-analyzing genetic association data.
Blood-based biomarkers represent a scalable and accessible approach for the detection and monitoring of Alzheimer’s disease (AD). Plasma phosphorylated tau (p-tau) and neurofilament light (NfL) are validated biomarkers for the detection of tau and neurodegenerative brain changes in AD, respectively. There is now emphasis to expand beyond these markers to detect and provide insight into the pathophysiological processes of AD. To this end, a reactive astrocytic marker, namely plasma glial fibrillary acidic protein (GFAP), has been of interest. Yet, little is known about the relationship between plasma GFAP and AD. Here, we examined the association between plasma GFAP, diagnostic status, and neuropsychological test performance. Diagnostic accuracy of plasma GFAP was compared with plasma measures of p-tau181 and NfL.
Participants and Methods:
This sample included 567 participants from the Boston University (BU) Alzheimer’s Disease Research Center (ADRC) Longitudinal Clinical Core Registry, including individuals with normal cognition (n=234), mild cognitive impairment (MCI) (n=180), and AD dementia (n=153). The sample included all participants who had a blood draw. Participants completed a comprehensive neuropsychological battery (sample sizes across tests varied due to missingness). Diagnoses were adjudicated during multidisciplinary diagnostic consensus conferences. Plasma samples were analyzed using the Simoa platform. Binary logistic regression analyses tested the association between GFAP levels and diagnostic status (i.e., cognitively impaired due to AD versus unimpaired), controlling for age, sex, race, education, and APOE e4 status. Area under the curve (AUC) statistics from receiver operating characteristics (ROC) using predicted probabilities from binary logistic regression examined the ability of plasma GFAP to discriminate diagnostic groups compared with plasma p-tau181 and NfL. Linear regression models tested the association between plasma GFAP and neuropsychological test performance, accounting for the above covariates.
Results:
The mean (SD) age of the sample was 74.34 (7.54), 319 (56.3%) were female, 75 (13.2%) were Black, and 223 (39.3%) were APOE e4 carriers. Higher GFAP concentrations were associated with increased odds for having cognitive impairment (GFAP z-score transformed: OR=2.233, 95% CI [1.609, 3.099], p<0.001; non-z-transformed: OR=1.004, 95% CI [1.002, 1.006], p<0.001). ROC analyses, comprising of GFAP and the above covariates, showed plasma GFAP discriminated the cognitively impaired from unimpaired (AUC=0.75) and was similar, but slightly superior, to plasma p-tau181 (AUC=0.74) and plasma NfL (AUC=0.74). A joint panel of the plasma markers had greatest discrimination accuracy (AUC=0.76). Linear regression analyses showed that higher GFAP levels were associated with worse performance on neuropsychological tests assessing global cognition, attention, executive functioning, episodic memory, and language abilities (ps<0.001) as well as higher CDR Sum of Boxes (p<0.001).
Conclusions:
Higher plasma GFAP levels differentiated participants with cognitive impairment from those with normal cognition and were associated with worse performance on all neuropsychological tests assessed. GFAP had similar accuracy in detecting those with cognitive impairment compared with p-tau181 and NfL, however, a panel of all three biomarkers was optimal. These results support the utility of plasma GFAP in AD detection and suggest the pathological processes it represents might play an integral role in the pathogenesis of AD.
Blood-based biomarkers offer a more feasible alternative to Alzheimer’s disease (AD) detection, management, and study of disease mechanisms than current in vivo measures. Given their novelty, these plasma biomarkers must be assessed against postmortem neuropathological outcomes for validation. Research has shown utility in plasma markers of the proposed AT(N) framework, however recent studies have stressed the importance of expanding this framework to include other pathways. There is promising data supporting the usefulness of plasma glial fibrillary acidic protein (GFAP) in AD, but GFAP-to-autopsy studies are limited. Here, we tested the association between plasma GFAP and AD-related neuropathological outcomes in participants from the Boston University (BU) Alzheimer’s Disease Research Center (ADRC).
Participants and Methods:
This sample included 45 participants from the BU ADRC who had a plasma sample within 5 years of death and donated their brain for neuropathological examination. Most recent plasma samples were analyzed using the Simoa platform. Neuropathological examinations followed the National Alzheimer’s Coordinating Center procedures and diagnostic criteria. The NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Measures of GFAP were log-transformed. Binary logistic regression analyses tested the association between GFAP and autopsy-confirmed AD status, as well as with semi-quantitative ratings of regional atrophy (none/mild versus moderate/severe) using binary logistic regression. Ordinal logistic regression analyses tested the association between plasma GFAP and Braak stage and CERAD neuritic plaque score. Area under the curve (AUC) statistics from receiver operating characteristics (ROC) using predicted probabilities from binary logistic regression examined the ability of plasma GFAP to discriminate autopsy-confirmed AD status. All analyses controlled for sex, age at death, years between last blood draw and death, and APOE e4 status.
Results:
Of the 45 brain donors, 29 (64.4%) had autopsy-confirmed AD. The mean (SD) age of the sample at the time of blood draw was 80.76 (8.58) and there were 2.80 (1.16) years between the last blood draw and death. The sample included 20 (44.4%) females, 41 (91.1%) were White, and 20 (44.4%) were APOE e4 carriers. Higher GFAP concentrations were associated with increased odds for having autopsy-confirmed AD (OR=14.12, 95% CI [2.00, 99.88], p=0.008). ROC analysis showed plasma GFAP accurately discriminated those with and without autopsy-confirmed AD on its own (AUC=0.75) and strengthened as the above covariates were added to the model (AUC=0.81). Increases in GFAP levels corresponded to increases in Braak stage (OR=2.39, 95% CI [0.71-4.07], p=0.005), but not CERAD ratings (OR=1.24, 95% CI [0.004, 2.49], p=0.051). Higher GFAP levels were associated with greater temporal lobe atrophy (OR=10.27, 95% CI [1.53,69.15], p=0.017), but this was not observed with any other regions.
Conclusions:
The current results show that antemortem plasma GFAP is associated with non-specific AD neuropathological changes at autopsy. Plasma GFAP could be a useful and practical biomarker for assisting in the detection of AD-related changes, as well as for study of disease mechanisms.
Female fertility is a complex trait with age-specific changes in spontaneous dizygotic (DZ) twinning and fertility. To elucidate factors regulating female fertility and infertility, we conducted a genome-wide association study (GWAS) on mothers of spontaneous DZ twins (MoDZT) versus controls (3273 cases, 24,009 controls). This is a follow-up study to the Australia/New Zealand (ANZ) component of that previously reported (Mbarek et al., 2016), with a sample size almost twice that of the entire discovery sample meta-analysed in the previous article (and five times the ANZ contribution to that), resulting from newly available additional genotyping and representing a significant increase in power. We compare analyses with and without male controls and show unequivocally that it is better to include male controls who have been screened for recent family history, than to use only female controls. Results from the SNP based GWAS identified four genomewide significant signals, including one novel region, ZFPM1 (Zinc Finger Protein, FOG Family Member 1), on chromosome 16. Previous signals near FSHB (Follicle Stimulating Hormone beta subunit) and SMAD3 (SMAD Family Member 3) were also replicated (Mbarek et al., 2016). We also ran the GWAS with a dominance model that identified a further locus ADRB2 on chr 5. These results have been contributed to the International Twinning Genetics Consortium for inclusion in the next GWAS meta-analysis (Mbarek et al., in press).
The clinical field of depression and other mood disorders is characterised by the vast heterogeneity between those who present for care, and the highly variable degree of response to the range of psychological, pharmacological and physical treatments currently provided. These individual differences likely have a genetic component, and leveraging genetic risk is appealing because genetic risk factors point to causality. The possibility that individual genotyping at entry to health care may be a key way forward is worthy of discussion (Torkamani et al., 2018).
The recruitment of participants for research studies may be subject to bias. The Prospective Imaging Study of Ageing (PISA) aims to characterize the phenotype and natural history of healthy adult Australians at high future risk of Alzheimer’s disease (AD). Participants approached to take part in PISA were selected from existing cohort studies with available genomewide genetic data for both successfully and unsuccessfully recruited participants, allowing us to investigate the genetic contribution to voluntary recruitment, including the genetic predisposition to AD. We use a polygenic risk score (PRS) approach to test to what extent the genetic risk for AD, and related risk factors predict participation in PISA. We did not identify a significant association of genetic risk for AD with study participation, but we did identify significant associations with PRS for key causal risk factors for AD, IQ, household income and years of education. We also found that older and female participants were more likely to take part in the study. Our findings highlight the importance of considering bias in key risk factors for AD in the recruitment of individuals for cohort studies.
Many studies aggregate prescription opioid misuse (POM) and heroin use into a single phenotype, but emerging evidence suggests that their genetic and environmental influences may be partially distinct.
Methods
In total, 7164 individual twins (84.12% complete pairs; 59.81% female; mean age = 30.58 years) from the Australian Twin Registry reported their lifetime misuse of prescription opioids, stimulants, and sedatives, and lifetime use of heroin, cannabis, cocaine/crack, illicit stimulants, hallucinogens, inhalants, solvents, and dissociatives via telephone interview. Independent pathway models (IPMs) and common pathway models (CPMs) partitioned the variance of drug use phenotypes into general and drug-specific genetic (a), common environmental (c), and unique environmental factors (e).
Results
An IPM with one general a and one general e factor and a one-factor CPM provided comparable fit to the data. General factors accounted for 55% (a = 14%, e = 41%) and 79% (a = 64%, e = 15%) of the respective variation in POM and heroin use in the IPM, and 25% (a = 12%, c = 8%, e = 5%) and 80% (a = 38%, c = 27%, e = 15%) of the respective variation in POM and heroin use in the CPM. Across both models, POM emerged with substantial drug-specific genetic influence (26–39% of total phenotypic variance; 69–74% of genetic variance); heroin use did not (0% of total phenotypic variance; 0% of genetic variance in both models). Prescription sedative misuse also demonstrated significant drug-specific genetic variance.
Conclusions
Genetic variation in POM, but not heroin use, is predominantly drug-specific. Misuse of prescription medications that reduce experiences of subjective distress may be partially influenced by sources of genetic variation separate from illicit drug use.
Current psychiatric diagnoses, although heritable, have not been clearly mapped onto distinct underlying pathogenic processes. The same symptoms often occur in multiple disorders, and a substantial proportion of both genetic and environmental risk factors are shared across disorders. However, the relationship between shared symptoms and shared genetic liability is still poorly understood.
Aims
Well-characterised, cross-disorder samples are needed to investigate this matter, but few currently exist. Our aim is to develop procedures to purposely curate and aggregate genotypic and phenotypic data in psychiatric research.
Method
As part of the Cardiff MRC Mental Health Data Pathfinder initiative, we have curated and harmonised phenotypic and genetic information from 15 studies to create a new data repository, DRAGON-Data. To date, DRAGON-Data includes over 45 000 individuals: adults and children with neurodevelopmental or psychiatric diagnoses, affected probands within collected families and individuals who carry a known neurodevelopmental risk copy number variant.
Results
We have processed the available phenotype information to derive core variables that can be reliably analysed across groups. In addition, all data-sets with genotype information have undergone rigorous quality control, imputation, copy number variant calling and polygenic score generation.
Conclusions
DRAGON-Data combines genetic and non-genetic information, and is available as a resource for research across traditional psychiatric diagnostic categories. Algorithms and pipelines used for data harmonisation are currently publicly available for the scientific community, and an appropriate data-sharing protocol will be developed as part of ongoing projects (DATAMIND) in partnership with Health Data Research UK.
Genes associated with educational attainment may be related to or interact with adolescent alcohol, tobacco and cannabis use. Potential gene–environment interplay between educational attainment polygenic scores (EA-PGS) and adolescent alcohol, tobacco, and cannabis use was evaluated with a series of regression models fitted to data from a sample of 1871 adult Australian twins. All models controlled for age, age2, cohort, sex and genetic ancestry as fixed effects, and a genetic relatedness matrix was included as a random effect. Although there was no evidence that adolescent alcohol, tobacco or cannabis use interacted with EA-PGS to influence educational attainment, there was a significant, positive gene–environment correlation with adolescent alcohol use at all PGS thresholds (ps <.02). Higher EA-PGS were associated with an increased likelihood of using alcohol as an adolescent (ΔR2 ranged from 0.5% to 1.1%). The positive gene–environment correlation suggests a complex relationship between educational attainment and alcohol use that is due to common genetic factors.
Biomarkers may be useful endophenotypes for genetic studies if they share genetic sources of variation with the outcome, for example, with all-cause mortality. Australian adult study participants who had reported their parental survival information were included in the study: 14,169 participants had polygenic risk scores (PRS) from genotyping and up to 13,365 had biomarker results. We assessed associations between participants’ biomarker results and parental survival, and between biomarker results and eight parental survival PRS at varying p-value cut-offs. Survival in parents was associated with participants’ serum bilirubin, C-reactive protein, HDL cholesterol, triglycerides and uric acid, and with LDL cholesterol for participants’ fathers but not for their mothers. PRS for all-cause mortality were associated with liver function tests (alkaline phosphatase, butyrylcholinesterase, gamma-glutamyl transferase), metabolic tests (LDL and HDL cholesterol, triglycerides, uric acid), and acute-phase reactants (C-reactive protein, globulins). Association between offspring biomarker results and parental survival demonstrates the existence of familial effects common to both, while associations between biomarker results and PRS for mortality favor at least a partial genetic cause of this covariation. Identification of genetic loci affecting mortality-associated biomarkers offers a route to the identification of additional loci affecting mortality.
The hippocampus is a complex brain structure with key roles in cognitive and emotional processing and with subregion abnormalities associated with a range of disorders and psychopathologies. Here we combine data from two large independent young adult twin/sibling cohorts to obtain the most accurate estimates to date of genetic covariation between hippocampal subfield volumes and the hippocampus as a single volume. The combined sample included 2148 individuals, comprising 1073 individuals from 627 families (mean age = 22.3 years) from the Queensland Twin IMaging (QTIM) Study, and 1075 individuals from 454 families (mean age = 28.8 years) from the Human Connectome Project (HCP). Hippocampal subfields were segmented using FreeSurfer version 6.0 (CA4 and dentate gyrus were phenotypically and genetically indistinguishable and were summed to a single volume). Multivariate twin modeling was conducted in OpenMx to decompose variance into genetic and environmental sources. Bivariate analyses of hippocampal formation and each subfield volume showed that 10%–72% of subfield genetic variance was independent of the hippocampal formation, with greatest specificity found for the smaller volumes; for example, CA2/3 with 42% of genetic variance being independent of the hippocampus; fissure (63%); fimbria (72%); hippocampus-amygdala transition area (41%); parasubiculum (62%). In terms of genetic influence, whole hippocampal volume is a good proxy for the largest hippocampal subfields, but a poor substitute for the smaller subfields. Additive genetic sources accounted for 49%–77% of total variance for each of the subfields in the combined sample multivariate analysis. In addition, the multivariate analyses were sufficiently powered to identify common environmental influences (replicated in QTIM and HCP for the molecular layer and CA4/dentate gyrus, and accounting for 7%–16% of total variance for 8 of 10 subfields in the combined sample). This provides the clearest indication yet from a twin study that factors such as home environment may influence hippocampal volumes (albeit, with caveats).
Subthreshold/attenuated syndromes are established precursors of full-threshold mood and psychotic disorders. Less is known about the individual symptoms that may precede the development of subthreshold syndromes and associated social/functional outcomes among emerging adults.
Methods
We modeled two dynamic Bayesian networks (DBN) to investigate associations among self-rated phenomenology and personal/lifestyle factors (role impairment, low social support, and alcohol and substance use) across the 19Up and 25Up waves of the Brisbane Longitudinal Twin Study. We examined whether symptoms and personal/lifestyle factors at 19Up were associated with (a) themselves or different items at 25Up, and (b) onset of a depression-like, hypo-manic-like, or psychotic-like subthreshold syndrome (STS) at 25Up.
Results
The first DBN identified 11 items that when endorsed at 19Up were more likely to be reendorsed at 25Up (e.g., hypersomnia, impaired concentration, impaired sleep quality) and seven items that when endorsed at 19Up were associated with different items being endorsed at 25Up (e.g., earlier fatigue and later role impairment; earlier anergia and later somatic pain). In the second DBN, no arcs met our a priori threshold for inclusion. In an exploratory model with no threshold, >20 items at 19Up were associated with progression to an STS at 25Up (with lower statistical confidence); the top five arcs were: feeling threatened by others and a later psychotic-like STS; increased activity and a later hypo-manic-like STS; and anergia, impaired sleep quality, and/or hypersomnia and a later depression-like STS.
Conclusions
These probabilistic models identify symptoms and personal/lifestyle factors that might prove useful targets for indicated preventative strategies.
It is widely recognized that dizygotic twinning (DZT) runs in families, but estimates of heritability from twin and family data are remarkably scarce and vary considerably. Here, we traced seven large, sometimes historical, multigeneration pedigrees from West Africans, fin de siècle French Jews, Canadians (two pedigrees), and the French royal family, in which twin births were recorded. We estimated heritability of twinning (of all types) as zygosity information was not available, diluting the true DZT heritability by a third or so. The estimates in the range 8−20% are remarkably consistent across time (8−19 generations) and ethnicities and also consistent with twin and family estimates.