We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We initiate a systematic study of generic stability independence and introduce the class of treeless theories in which this notion of independence is particularly well behaved. We show that the class of treeless theories contains both binary theories and stable theories and give several applications of the theory of independence for treeless theories. As a corollary, we show that every binary NSOP$_{3}$ theory is simple.
We develop the theory of Kim-independence in the context of NSOP$_{1}$ theories satisfying the existence axiom. We show that, in such theories, Kim-independence is transitive and that -Morley sequences witness Kim-dividing. As applications, we show that, under the assumption of existence, in a low NSOP$_{1}$ theory, Shelah strong types and Lascar strong types coincide and, additionally, we introduce a notion of rank for NSOP$_{1}$ theories.