To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Late-onset depression (LOD) is featured by disrupted cognitive performance, which is refractory to conventional treatments and increases the risk of dementia. Aberrant functional connectivity among various brain regions has been reported in LOD, but their abnormal patterns of functional network connectivity remain unclear in LOD.
Methods
A total of 82 LOD and 101 healthy older adults (HOA) accepted functional magnetic resonance imaging scanning and a battery of neuropsychological tests. Static functional network connectivity (sFNC) and dynamic functional network connectivity (dFNC) were analyzed using independent component analysis, with dFNC assessed via a sliding window approach. Both sFNC and dFNC contributions were classified using a support vector machine.
Results
LOD exhibited decreased sFNC among the default mode network (DMN), salience network (SN), sensorimotor network (SMN), and language network (LAN), along with reduced dFNC of DMN-SN and SN-SMN. The sFNC of SMN-LAN and dFNC of DMN-SN contributed the most in differentiating LOD and HOA by support vector machine. Additionally, abnormal sFNC of DMN-SN and DMN-SMN both correlated with working memory, with DMN-SMN mediating the relationship between depression and working memory. The dFNC of SN-SMN was associated with depressive severity and multiple domains of cognition, and mediated the impact of depression on memory and semantic function.
Conclusions
This study displayed the abnormal connectivity among DMN, SN, and SMN that involved the relationship between depression and cognition in LOD, which might reveal mutual biomarkers between depression and cognitive decline in LOD.
Methadone maintenance treatment (MMT) and protracted abstinence (PA) effectively reduce the craving for heroin among individuals with heroin use disorder (HUD). However, the difference in their effects on brain function, especially the coupling among the large-scale brain networks (default mode [DMN], salience [SN], and executive control [ECN] networks), remains unclear. This study analyzed the effects of the MMT and PA on these networks and the predictive value of the bilateral resource allocation index (RAI) for craving for heroin.
Methods
Twenty-five individuals undergoing the MMT, 22 undergoing the PA, and 51 healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI). Independent component analysis identified the ECN, DMN, and SN. The SN-ECN and SN-DMN connectivity and the bilateral RAI were evaluated. The relationships between network coupling and clinical and psychological characteristics were analyzed. The multiple linear regression model identified significant variables for predicting craving scores.
Results
The MMT group showed significantly stronger SN-left ECN (lECN) coupling and left RAI than the PA group. In the MMT group, SN-lECN connectivity and bilateral RAI were positively correlated with the total methadone dose. In both treatment groups, SN-right ECN (rECN) connectivity and right RAI were negatively correlated with craving. The models revealed that the bilateral RAI and the MMT and PA were associated with the craving.
Conclusions
The MMT enhances SN-lECN coupling and the left RAI more than the PA, possibly due to higher control modulation. The RAI could help predict heroin craving in individuals with HUD undergoing either treatment program.
Persistent malnutrition is associated with poor clinical outcomes in cancer. However, assessing its reversibility can be challenging. The present study aimed to utilise machine learning (ML) to predict reversible malnutrition (RM) in patients with cancer. A multicentre cohort study including hospitalised oncology patients. Malnutrition was diagnosed using an international consensus. RM was defined as a positive diagnosis of malnutrition upon patient admission which turned negative one month later. Time-series data on body weight and skeletal muscle were modelled using a long short-term memory architecture to predict RM. The model was named as WAL-net, and its performance, explainability, clinical relevance and generalisability were evaluated. We investigated 4254 patients with cancer-associated malnutrition (discovery set = 2977, test set = 1277). There were 2783 men and 1471 women (median age = 61 years). RM was identified in 754 (17·7 %) patients. RM/non-RM groups showed distinct patterns of weight and muscle dynamics, and RM was negatively correlated to the progressive stages of cancer cachexia (r = –0·340, P < 0·001). WAL-net was the state-of-the-art model among all ML algorithms evaluated, demonstrating favourable performance to predict RM in the test set (AUC = 0·924, 95 % CI = 0·904, 0·944) and an external validation set (n 798, AUC = 0·909, 95 % CI = 0·876, 0·943). Model-predicted RM using baseline information was associated with lower future risks of underweight, sarcopenia, performance status decline and progression of malnutrition (all P < 0·05). This study presents an explainable deep learning model, the WAL-net, for early identification of RM in patients with cancer. These findings might help the management of cancer-associated malnutrition to optimise patient outcomes in multidisciplinary cancer care.
Mapping reviews (MRs) are crucial for identifying research gaps and enhancing evidence utilization. Despite their increasing use in health and social sciences, inconsistencies persist in both their conceptualization and reporting. This study aims to clarify the conceptual framework and gather reporting items from existing guidance and methodological studies. A comprehensive search was conducted across nine databases and 11 institutional websites, including documents up to January 2024. A total of 68 documents were included, addressing 24 MR terms and 55 definitions, with 39 documents discussing distinctions and overlaps among these terms. From the documents included, 28 reporting items were identified, covering all the steps of the process. Seven documents mentioned reporting on the title, four on the abstract, and 14 on the background. Ten methods-related items appeared in 56 documents, with the median number of documents supporting each item being 34 (interquartile range [IQR]: 27, 39). Four results-related items were mentioned in 18 documents (median: 14.5, IQR: 11.5, 16), and four discussion-related items appeared in 25 documents (median: 5.5, IQR: 3, 13). There was very little guidance about reporting conclusions, acknowledgments, author contributions, declarations of interest, and funding sources. This study proposes a draft 28-item reporting checklist for MRs and has identified terminologies and concepts used to describe MRs. These findings will first be used to inform a Delphi consensus process to develop reporting guidelines for MRs. Additionally, the checklist and definitions could be used to guide researchers in reporting high-quality MRs.
Recent studies have increasingly utilized gradient metrics to investigate the spatial transitions of brain organization, enabling the conversion of macroscale brain features into low-dimensional manifold representations. However, it remains unclear whether alterations exist in the cortical morphometric similarity (MS) network gradient in patients with schizophrenia (SCZ). This study aims to examine potential differences in the principal MS gradient between individuals with SCZ and healthy controls and to explore how these differences relate to transcriptional profiles and clinical phenomenology.
Methods
MS network was constructed in this study, and its gradient of the network was computed in 203 patients with SCZ and 201 healthy controls, who shared the same demographics in terms of age and gender. To examine irregularities in the MS network gradient, between-group comparisons were carried out, and partial least squares regression analysis was used to study the relationships between the MS network gradient-based variations in SCZ, and gene expression patterns and clinical phenotype.
Results
In contrast to healthy controls, the principal MS gradient of patients with SCZ was primarily significantly lower in sensorimotor areas, and higher in more areas. In addition, the aberrant gradient pattern was spatially linked with the genes enriched for neurobiologically significant pathways and preferential expression in various brain regions and cortical layers. Furthermore, there were strong positive connections between the principal MS gradient and the symptomatologic score in SCZ.
Conclusions
These findings showed changes in the principal MS network gradient in SCZ and offered potential molecular explanations for the structural changes underpinning SCZ.
This study evaluated the effects of chenodeoxycholic acid (CDCA), a farnesoid X receptor (FXR) potential activator, on growth performance, antioxidant capacity, glucose metabolism and inflammation in largemouth bass (Micropterus salmoides) (initial body weight: 5·45 ± 0·02 g) fed a high-carbohydrate diet. Experimental diets included a positive control (5 % α-starch), a negative control (10 % α-starch) and two diets containing 10 % α-starch supplemented with either 0·05 % or 0·10 % CDCA. After 8 weeks, the high-carbohydrate diet reduced growth performance and increased hepatosomatic and viscerosomatic indexes, which were mitigated by 0·10 % CDCA supplementation. The high-carbohydrate diet also increased hepatic glycogen and crude lipid content, both of which were reduced by 0·10 % CDCA. Furthermore, the high-carbohydrate diet-induced oxidative stress, histopathological changes and reduced liver lysozyme activity, which were ameliorated by CDCA supplementation. Molecular analysis showed that the high-carbohydrate diet suppressed FXR and phosphorylated AKT1 (p-AKT1) protein expression in the liver, downregulated insulin signalling (ira, irs, pi3kr1 and akt1), gluconeogenesis (pepck and g6pc) and glycolysis genes (gk, pk and pfkl). CDCA supplementation upregulated fxr expression, activated shp, enhanced the expression of insulin signalling and glycolytic genes (gk, pk and pfkl) and inhibited gluconeogenesis. Additionally, CDCA reduced inflammatory markers (nf-κb and il-1β) and restored anti-inflammatory mediators (il-10, iκb and tgf-β). In conclusion, 0·10 % CDCA improved carbohydrate metabolism and alleviated liver inflammation in largemouth bass fed a high dietary carbohydrate, partially through FXR activation.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
The Early-Middle Jurassic impression/compression macroflora and the palynoflora from the Qaidam Basin in the northeastern Qinghai-Xizang (Tibetan) Plateau have been well studied; however, fossil wood from this region has not been previously documented systematically. Here, we describe an anatomically well-preserved fossil wood specimen from the Lower Jurassic Huoshaoshan Formation at the Dameigou section in northern Qinghai Province, northwestern China. This fossil exhibits typical Metapodocarpoxylon Dupéron-Laudoueneix et Pons anatomy with usually araucarian radial tracheid pits and variable cross-field pits, representing a new record for Metapodocarpoxylon in the Qaidam Basin. This discovery indicates that trees with this type of wood anatomy were not confined to northern Gondwana but also grew in more northerly regions in Laurasia. The wood displays distinct growth rings, with abundant, well-formed earlywood and narrow latewood. This observation, along with previous interpretations based on macroflora, palynoflora and sedimentological data, suggests that a warm and humid climate with mild seasonality prevailed in the region during the Early Jurassic.
The ubiquitous marine radiocarbon reservoir effect (MRE) constrains the construction of reliable chronologies for marine sediments and the further comparison of paleoclimate records. Different reference values were suggested from various archives. However, it remains unclear how climate and MREs interact. Here we studied two pre-bomb corals from the Hainan Island and Xisha Island in the northern South China Sea (SCS), to examine the relationship between MRE and regional climate change. We find that the MRE from east of Hainan Island is mainly modulated by the Southern Asian Summer Monsoon-induced precipitation (with 11.4% contributed to seawater), rather than wind induced upwelling. In contrast, in the relatively open seawater of Xisha Island, the MRE is dominated by the East Asian Winter Monsoon, with relatively more negative (lower) ΔR values associated with high wind speeds, implying horizontal transport of seawater. The average SCS ΔR value relative to the Marine20 curve is –161±39 14C years. Our finding highlights the essential role of monsoon in regulating the MRE in the northern SCS, in particularly the tight bond between east Asian winter monsoon and regional MRE.
This study aimed to investigate the effects of physical multimorbidity on the trajectory of cognitive decline over 17 years and whether vary across wealth status. The study was conducted in 9035 respondents aged 50+ at baseline from nine waves (2002–2019) of the English Longitudinal Study of Aging. A latent class analysis was used to identify patterns of physical multimorbidity, and mixed multilevel models were performed to determine the association between physical multimorbidity and trajectories of cognitive decline. Joint analyses were conducted to further verify the influence of wealth status. Four patterns of physical multimorbidity were identified. Mixed multilevel models with quadratic terms of time and status/patterns indicated significant non-linear trajectories of multimorbidity on cognitive function. The magnitude of the association between complex multisystem patterns and cognitive decline increased the most as follow-up progressed. Individuals with high wealth and hypertension/diabetes patterns have significantly lower composite global cognitive z scores over time as compared with respiratory/osteoporosis patterns. Physical multimorbidity at baseline is associated with the trajectory of cognitive decline, and the magnitude of the association increased over time. The trend of cognitive decline differed in specific combinations of wealth status and physical multimorbidity.
This paper introduces a novel fiber-based picosecond burst-mode laser system capable of operating at high power and high repetition rates. A pulse-circulating fiber ring was developed as a burst generator, achieving an intra-burst repetition rate of 469 MHz without the need for a high-repetition-rate seed source. This design also allows for flexible adjustment of the number of sub-pulses, burst repetition rate and burst shape. In addition, a master oscillator power amplifier was employed to analyze the amplification characteristics of bursts. The system demonstrated a maximum average power of 606 W, with a measured sub-pulse duration of 62 ps and the highest sub-pulse peak power of 980 kW. To the best of our knowledge, this marks the highest average power obtained in burst-mode ultrafast lasers. Such a laser system holds potential for applications in precision manufacturing, high-speed imaging, high-precision ranging and other diverse domains.
To construct an evidence-based practice programme for the nutrition management of older adults in nursing homes. The programme will provide a basis for improving or solving the nutrition management problems of older adults in nursing homes.
Design:
The study is based on guideline evidence and Delphi method. The evidence was comprehensively searched, assessed and summarized, and the best evidence and a preliminary programme for nutrition management of older adults in nursing homes were aggregated. Then, the Delphi method was used to assess the applicability of the preliminary programme and the obstacle factors to modify, supplement and improve the nutrition management programme.
Setting:
Baseline survey data were collected from three nursing homes in Ningxia, China, and guideline evidence was obtained through systematic searches of the Cochrane Library, PubMed and other scientific databases, as well as relevant official websites.
Participants:
A total of 350 older adults residing nursing homes and 160 nurses participated in the baseline survey. To ensure the programme’s applicability and identify potential implementation obstacles, fifteen experts from local grade A hospitals, nursing homes and community health centres were consulted for review.
Results:
A fourteen-item, fifty-six-best-evidence nutrition management programme for older adults in nursing homes was developed based on five guideline evidences and baseline survey findings.
Conclusions:
This is a systematic and comprehensive nutritional management programme for older adults in nursing homes based on guideline evidence, which can provide a standardised basis for the implementation of scientific nutritional management in nursing homes in Ningxia. Managers should promote the translation of evidence into practice in accordance with the specific circumstances of individual nursing homes.
Oncomelania hupensis (O. hupensis), the sole intermediate host of Schistosoma japonicum, greatly influence the prevalence and distribution of schistosomiasis japonica. The distribution area of O. hupensis has remained extensive for numerous years. This study aimed to establish a valid agent-based model of snail density and further explore the environmental conditions suitable for snail breeding. A marshland with O. hupensis was selected as a study site in Dongting Lake Region, and snail surveys were monthly conducted from 2007 to 2016. Combined with the data from historical literature, an agent-based model of snail density was constructed in NetLogo 6.2.0 and validated with the collected survey data. BehaviorSpace was used to identify the optimal ranges of soil temperature, pH, soil water content, and vegetation coverage for snail growth, development and reproduction. An agent-based model of snail density was constructed and showed a strong agreement with the monthly average snail density from the field surveys. As soil temperature increased, the snail density initially rose before declining, reaching its peak at around 21°C. There were similar variation patterns for other environmental factors. The findings from the model suggested that the optimum ranges of soil temperature, pH, soil water content and vegetation coverage were 19°C to 23 °C, 6.4 to 7.6, 42% to 75%, and 70% to 93%, respectively. A valid agent-based model of snail density was constructed, providing more objective information about the optimum ranges of environmental factors for snail growth, development and reproduction.
To investigate the associations between dietary patterns and biological ageing, identify the most recommended dietary pattern for ageing and explore the potential mediating role of gut microbiota in less-developed ethnic minority regions (LEMRs). This prospective cohort study included 8288 participants aged 30–79 years from the China Multi-Ethnic Cohort study. Anthropometric measurements and clinical biomarkers were utilised to construct biological age based on Klemera and Doubal’s method (KDM-BA) and KDM-BA acceleration (KDM-AA). Dietary information was obtained through the baseline FFQ. Six dietary patterns were constructed: plant-based diet index, healthful plant-based diet index, unhealthful plant-based diet index, healthy diet score, Dietary Approaches to Stop Hypertension (DASH), and alternative Mediterranean diets. Follow-up adjusted for baseline analysis assessed the associations between dietary patterns and KDM-AA. Additionally, quantile G-computation identified significant beneficial and harmful food groups. In the subsample of 764 participants, we used causal mediation model to explore the mediating role of gut microbiota in these associations. The results showed that all dietary patterns were associated with KDM-AA, with DASH exhibiting the strongest negative association (β = −0·91, 95 % CI (–1·19, −0·63)). The component analyses revealed that beneficial food groups primarily included tea and soy products, whereas harmful groups mainly comprised salt and processed vegetables. In mediation analysis, the Synergistetes and Pyramidobacter possibly mediated the negative associations between plant-based diets and KDM-AA (5·61–9·19 %). Overall, healthy dietary patterns, especially DASH, are negatively associated with biological ageing in LEMRs, indicating that Synergistetes and Pyramidobacter may be potential mediators. Developing appropriate strategies may promote healthy ageing in LEMRs.
Certain rhythmic arterial pressure waves in humans and animals have been noticed for over one century. We found the novel and slowest arterial pressure waves in children following surgical repair for CHD, and examined their characteristics and clinical implications.
Methods:
We enrolled 212 children with 22 types of CHD within postoperative 48 h. We monitored haemodynamics (blood pressure, cardiac cycle efficiency, dP/dTmax), cerebral (ScO2), and renal (SrO2) oxygen saturation every 6 s. Electroencephalogram was continuously monitored. Mean blood flow velocity (Vm) of the middle cerebral artery was measured at 24 h.
Results:
We found the waves with a frequency of ∼ 90 s immediately following surgical repair in 46 patients in 12 types of CHD (21.7%), being most prevalent in patients with aortic arch abnormalities (Aorta Group, n = 24, 42.3%) or ventricular septal defect (Ventricular Septal Defect Group, n = 12, 23.5%). In Aorta and Ventricular Septal Defect Groups, the occurrence of the waves was associated with lower blood pressures, dP/dTmax, cardiac cycle efficiency, ScO2, SrO2, Vm, worse electroencephalogram background abnormalities, higher number of electroencephalogram sharp waves, and serum lactate (Ps <0.0001–0.07), and were accompanied with fluctuations of ScO2 and SrO2 in 80.6% and 69.6% of patients, respectively.
Conclusions:
The waves observed in children following cardiovascular surgery are the slowest ever reported, occurring most frequently in patients with aortic arch abnormalities or ventricular septal defect. While the occurrence of the waves was associated with statistically worse and fluctuated ScO2 and SrO2, worse systemic haemodynamics, and electroencephalogram abnormalities, at present these waves have no known clinical relevance.
As a required sample preparation method for 14C graphite, the Zn-Fe reduction method has been widely used in various laboratories. However, there is still insufficient research to improve the efficiency of graphite synthesis, reduce modern carbon contamination, and test other condition methodologies at Guangxi Normal University (GXNU). In this work, the experimental parameters, such as the reduction temperature, reaction time, reagent dose, Fe powder pretreatment, and other factors, in the Zn-Fe flame sealing reduction method for 14C graphite samples were explored and determined. The background induced by the sample preparation process was (2.06 ± 0.55) × 10–15, while the 12C– beam current were better than 40μA. The results provide essential instructions for preparing 14C graphite of ∼1 mg at the GXNU lab and technical support for the development of 14C dating and tracing, contributing to biology and environmental science.
A new vacuum line to extract CO2 from carbonate and dissolved inorganic carbon (DIC) in water was established at Guangxi Normal University. The vacuum line consisted of two main components: a CO2 bubble circulation region and a CO2 purification collection region, both of which were made of quartz glass and metal pipelines. To validate its reliability, a series of carbonate samples were prepared using this system. The total recovery rate of CO2 extraction and graphitization exceeded 80%. Furthermore, the carbon content in calcium carbonate exhibited a linear relationship with the CO2 pressure within the system, demonstrating its stability and reliability. The system was also employed to prepare and analyze various samples, including calcium carbonate blanks, foraminiferal, shell, groundwater, and subsurface oil-water samples. The accelerator mass spectrometry (AMS) results indicated that the average beam current for 12C- in the samples exceeded 40 μA. Additionally, the contamination introduced during the liquid sample preparation process was approximately (1.77 ± 0.57) × 10−14. Overall, the graphitized preparation system for carbonate and DIC in water exhibited high efficiency and recovery, meeting the requirements for samples dating back to approximately 30,000 years.
As an important component of prehistoric subsistence, an understanding of bone-working is essential for interpreting the evolution of early complex societies, yet worked bones are rarely systematically collected in China. Here, the authors apply multiple analytical methods to worked bones from the Longshan site of Pingliangtai, in central China, showing that Neolithic bone-working in this area, with cervid as the main raw material, was mature but localised, household-based and self-sufficient. The introduction of cattle in the Late Neolithic precipitated a shift in bone-working traditions but it was only later, in the Bronze Age, that cattle bones were utilised in a specialised fashion and dedicated bone-working industries emerged in urban centres.
Creating an environmentally friendly precursor to form a kaolinite intercalation compound is important for promoting the applications of nanohybrid kaolinite in electrochemical sensors, low- or zero-toxicity drug carriers, and clay-polymer nanocompounds. In the present study, a stable hydrated kaolinite pre-cursor with d001= 0.84 nm was prepared successfully by heating the transition phase, the as-prepared kaolinite-hydrazine intercalate, at temperatures between 40 and 70ºC. The structure of the hydrated kaolinite was characterized by X-ray diffraction and infrared spectroscopy. The morphology was examined using scanning electron microscopy. The results showed that the hydrated hydrazine of the transition phase was easy to decompose to hydrazines and water molecules in the interlayer at 40-70ºC. Hydrazine molecules de-intercalated gradually, and water molecules remained in the ditrigonal holes of the silicate layer with sufficient stability, finally forming the stable 0.84 nm hydrated kaolinite in the system with a success rate of 80–90%. The 0.84 nm hydrated kaolinite may become an excellent precursor for the preparation of other kaolinite intercalates. A degree of intercalation of ~100% was obtained for the kaolinite-ethylene glycol intercalate, and a degree of intercalation of ~80% was obtained for the kaolinite-glycine intercalate from the 0.84 nm hydrated kaolinite precursor.
In this work, we experimentally investigate the dependence of the stimulated Raman scattering (SRS) effect on the seed linewidth of a high-power nanosecond superfluorescent fiber source (ns-SFS). The results reveal that the SRS in the ns-SFS amplifier is significantly influenced by the full width at half maximum (FWHM) of the ns-SFS seed, and there is an optimal FWHM linewidth of 2 nm to achieve the lowest SRS in our case. The first-order SRS power ratio increases rapidly when the seed’s linewidth deviates from the optimal FWHM linewidth. By power scaling the ns-SFS seed with the optimal FWHM linewidth, a narrowband all-fiberized ns-SFS amplifier is achieved with a maximum average power of 602 W, pulse energy of 24.1 mJ and corresponding peak power of 422.5 kW. This is the highest average power and pulse energy achieved for all-fiberized ns-SFS amplifiers to the best of our knowledge.