We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter reviews the typical methods that are used to create and measure the physical states and subjective feelings that researchers refer to as affect or emotion, keeping in mind the scientific distinction between these two constructions. It reviews the variety of induction methods and measurement techniques that are used most frequently in social and personality psychology. The chapter outlines thirteen laboratory induction techniques such as films, images, faces, music, words, peripheral physiological manipulations, and virtual reality that are the most frequently and successfully used laboratory-based inductions. It presents a brief summary of each method, including a description, prototypical references, and advantages and disadvantages of each method. A psychologist's task is to discover facts about the mind (changes in affect or emotion) by measuring responses from a person (reaction times, perceptions, eye or muscle movements, bodily changes, or perhaps electrical, magnetic, blood flow, or chemical measures related to neurons firing).
Ion-milling-based sample preparation has the advantage that thin area can be obtained from almost any material. It has the disadvantage, however, that the amount of thin area can often be quite limited. This poses a problem when a large sampling area is needed from materials which must be thinned by ion milling. Cross-sectioned samples and grossly heterogeneous materials are two examples where this problem may be encountered. The group at IBM in East Fishkill have developed methods for mechanical grinding and polishing of TEM samples down to about I micron thickness. They use this as a starting point for final thinning by ion milling. This approach produces a large uniform thin area in a short time in the ion mill. We have built jigs that allow us to make these mechanically-thinned samples. We have also made flat-bottomed dimples using ultra-precision dimple grinders to achieve similar results. Both of these approaches are described. Examples are taken from cross-section samples of thin films on silicon, from steels with large carbides, and from rapidly solidified metal spheres embedded in electroplated copper.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.