We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Auditory verbal hallucinations (AVHs) in schizophrenia have been suggested to arise from failure of corollary discharge mechanisms to correctly predict and suppress self-initiated inner speech. However, it is unclear whether such dysfunction is related to motor preparation of inner speech during which sensorimotor predictions are formed. The contingent negative variation (CNV) is a slow-going negative event-related potential that occurs prior to executing an action. A recent meta-analysis has revealed a large effect for CNV blunting in schizophrenia. Given that inner speech, similar to overt speech, has been shown to be preceded by a CNV, the present study tested the notion that AVHs are associated with inner speech-specific motor preparation deficits.
Objectives
The present study aimed to provide a useful framework for directly testing the long-held idea that AVHs may be related to inner speech-specific CNV blunting in patients with schizophrenia. This may hold promise for a reliable biomarker of AVHs.
Methods
Hallucinating (n=52) and non-hallucinating (n=45) patients with schizophrenia, along with matched healthy controls (n=42), participated in a novel electroencephalographic (EEG) paradigm. In the Active condition, they were asked to imagine a single phoneme at a cue moment while, precisely at the same time, being presented with an auditory probe. In the Passive condition, they were asked to passively listen to the auditory probes. The amplitude of the CNV preceding the production of inner speech was examined.
Results
Healthy controls showed a larger CNV amplitude (p = .002, d = .50) in the Active compared to the Passive condition, replicating previous results of a CNV preceding inner speech. However, both patient groups did not show a difference between the two conditions (p > .05). Importantly, a repeated measure ANOVA revealed a significant interaction effect (p = .007, ηp2 = .05). Follow-up contrasts showed that healthy controls exhibited a larger CNV amplitude in the Active condition than both the hallucinating (p = .013, d = .52) and non-hallucinating patients (p < .001, d = .88). No difference was found between the two patient groups (p = .320, d = .20).
Conclusions
The results indicated that motor preparation of inner speech in schizophrenia was disrupted. While the production of inner speech resulted in a larger CNV than passive listening in healthy controls, which was indicative of the involvement of motor planning, patients exhibited markedly blunted motor preparatory activity to inner speech. This may reflect dysfunction in the formation of corollary discharges. Interestingly, the deficits did not differ between hallucinating and non-hallucinating patients. Future work is needed to elucidate the specificity of inner speech-specific motor preparation deficits with AVHs. Overall, this study provides evidence in support of atypical inner speech monitoring in schizophrenia.
Faraday complexity describes whether a spectropolarimetric observation has simple or complex magnetic structure. Quickly determining the Faraday complexity of a spectropolarimetric observation is important for processing large, polarised radio surveys. Finding simple sources lets us build rotation measure grids, and finding complex sources lets us follow these sources up with slower analysis techniques or further observations. We introduce five features that can be used to train simple, interpretable machine learning classifiers for estimating Faraday complexity. We train logistic regression and extreme gradient boosted tree classifiers on simulated polarised spectra using our features, analyse their behaviour, and demonstrate our features are effective for both simulated and real data. This is the first application of machine learning methods to real spectropolarimetry data. With 95% accuracy on simulated ASKAP data and 90% accuracy on simulated ATCA data, our method performs comparably to state-of-the-art convolutional neural networks while being simpler and easier to interpret. Logistic regression trained with our features behaves sensibly on real data and its outputs are useful for sorting polarised sources by apparent Faraday complexity.
Through drinking water, humans are commonly exposed to atrazine, a herbicide that acts as an endocrine and metabolic disruptor. It interferes with steroidogenesis, including promoting oestrogen production and altering cell metabolism. However, its precise impact on uterine development remains unknown. This study aimed to determine the effect of prolonged atrazine exposure on the uterus. Pregnant mice (n = 5/group) received 5 mg/kg body weight/day atrazine or DMSO in drinking water from gestational day 9.5 until weaning. Offspring continued to be exposed until 3 or 6 months of age (n = 5–9/group), when uteri were collected for morphological and molecular analyses and steroid quantification. Endometrial hyperplasia and leiomyoma were evident in the uteri of atrazine-exposed mice. Uterine oestrogen concentration, oestrogen receptor expression, and localisation were similar between groups, at both ages (P > 0.1). The expression and localisation of key epithelial-to-mesenchymal transition (EMT) genes and proteins, critical for tumourigenesis, remained unchanged between treatments, at both ages (P > 0.1). Hence, oestrogen-mediated changes to established EMT markers do not appear to underlie abnormal uterine morphology evident in atrazine exposure mice. This is the first report of abnormal uterine morphology following prolonged atrazine exposure starting in utero, it is likely that the abnormalities identified would negatively affect female fertility, although mechanisms remain unknown and require further study.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
The American Psychiatric Association introduced in Internet Gaming Disorder (IGD) in the appendix as a tentative disorder in the last edition of the Diagnostic and Statistical Manual of Mental Disorders. However, currently no systematic review exists about excessive gaming viewed from a clinical perspective.
Objectives and aims
To review clinical studies on gaming addiction in order to ascertain characteristics of both clinical and research studies to provide retrospective evidence in relation with the proposed IGD classification (including criteria, measures and therapies).
Methods
A systematic literature review of studies published from 1980 to 2015 has been conducted using three major psychology databases: Academic Search Complete, PsycInfo, and PsycArticles. A total of 5033 results from peer-reviewed journals were obtained, where 32 were identified as empirical clinical papers focused on gaming addiction.
Results
The clinical research studies on gaming identified were published between 1998 and 2015, most of which included patient samples. Categorizations identified in the research papers included: (i) patients’ characteristics (e.g., socio-demographics), (ii) criteria and measures used (e.g., scales to diagnose), (iii) types of gaming problems (e.g., game genre), (iv) and treatments (e.g., type of therapy).
Conclusions
Findings will be discussed against the background of the controversial IGD diagnostic criteria proposed in the DSM-5 in order to assess the extent to which previously published clinical knowledge matched the current proposal for including gaming addiction as behavioral addiction in the next diagnostic manual.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
In this study, a new centrifugal instability mode, which dominates within the boundary-layer flow over a slender rotating cone in still fluid, is used for the first time to model the problem within an enforced oncoming axial flow. The resulting problem necessitates an updated similarity solution to represent the basic flow more accurately than previous studies in the literature. The new mean flow field is subsequently perturbed, leading to disturbance equations that are solved via numerical and short-wavelength asymptotic approaches, yielding favourable comparisons with existing experiments. Essentially, the boundary-layer flow undergoes competition between the streamwise flow component, due to the oncoming flow, and the rotational flow component, due to effect of the spinning cone surface, which can be described mathematically in terms of a control parameter, namely the ratio of streamwise to axial flow. For a slender cone rotating in a sufficiently strong axial flow, the instability mode breaks down into Görtler-type counter-rotating spiral vortices, governed by an underlying centrifugal mechanism, which is consistent with experimental and theoretical studies for a slender rotating cone in otherwise still fluid.
Recent results have shown that convection forced by a temperature gradient along one horizontal boundary of a rectangular domain at a large Rayleigh number can be turbulent in parts of the flow field. However, the conditions for onset of turbulence, the dependence of flow and heat transport on Rayleigh number, and the roles of large and small scales in the flow, have not been established. We use three-dimensional direct numerical simulation (DNS) and large-eddy simulation (LES) over a wide range of Rayleigh numbers, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}Ra\sim 10^8\mbox{--}10^{15}$, for Prandtl number $Pr=5$ and a small aspect ratio, and show that a sequence of several stability transitions at $Ra \sim 10^{10}\mbox{--} 10^{11}$ defines a change from laminar to turbulent flow. The Prandtl number dependence too is examined at $Ra = 5.86 \times 10^{11}$. At the smallest $Ra$ considered the thermal boundary layer is characterized by a balance of viscous stress and buoyancy, whereas inertia and buoyancy dominate in the large-$Ra$ regime. The change in the momentum balance is accompanied by turbulent enhancement of the overall heat transfer, although both laminar and turbulent regimes give $Nu\sim Ra^{1/5}$. The results support both viscous and inviscid theoretical scaling models from previous work. The mechanical energy budget for an intermediate range of Rayleigh numbers above onset of instability ($10^{10}<Ra<10^{13}$) reveals that the small scales of motion are produced predominantly by thermal convection, whereas at $Ra \ge 10^{14}$ shear instability of the large-scale flow begins to play a dominant role in sustaining the small-scale turbulence. Extrapolation to ocean conditions requires knowledge of the inertial regime identified here, but the simulations show that the corresponding asymptotic balance has not been fully realized by $Ra \sim 10^{15}$.
The mechanical energy budget for thermally equilibrated Rayleigh–Bénard convection is developed theoretically, with explicit consideration of the role of available potential energy, this being the form in which all the mechanical energy for the flow is supplied. The analysis allows derivation for the first time of a closed analytical expression relating the rate of mixing in symmetric fully developed convection to the rate at which available potential energy is supplied by the thermal forcing. Only about half this supplied energy is dissipated viscously. The remainder is consumed by mixing acting to homogenize the density field. This finding is expected to apply over a wide range of Rayleigh and Prandtl numbers for which the Nusselt number is significantly greater than unity. Thus convection at large Rayleigh number involves energetically efficient mixing of density variations. In contrast to conventional approaches to Rayleigh–Bénard convection, the dissipation of temperature or density variance is shown not to be of direct relevance to the mechanical energy budget. Thus, explicit recognition of available potential energy as the source of mechanical energy for convection, and of both mixing and viscous dissipation as the sinks of this energy, could be of further use in understanding the physics.
The dynamics of horizontal convection are revealed by examining transient adjustment toward thermal equilibrium. We restrict attention to high Rayleigh numbers (of $O(1{0}^{12} )$) and a Prandtl number ${\sim }5$ that characterize many practical applications, and consider responses to small changes in the thermal boundary conditions, using laboratory experiments, three-dimensional direct numerical simulations (DNS) and simple theoretical models. The experiments and the mechanical energy budget from the DNS demonstrate that unsteady forcing can produce flow dramatically more active than horizontal convection under steady forcing. The physical mechanisms at work are indicated by the time scales of approach to the new equilibrium, and we show that these can range over two orders of magnitude depending on the imposed change in boundary conditions. Changes that lead to a net destabilizing buoyancy flux give rapid adjustments: for applied heat flux conditions the whole of the circulation is controlled by conduction through the stable portion of the boundary layer, whereas for applied temperature difference the circulation is controlled by small-scale convection within the unstable part of the boundary layer. The experiments, DNS and models are in close agreement and show that the time scale under applied temperatures is as small as 0.01 vertical diffusion time scales, a factor of four smaller than for imposed flux. Both cases give adjustments too rapid for diffusion in the interior to play a significant role, at least through 99 % of the adjustment, and we conclude that diffusion through the full depth is not significant in setting the equilibrium state. Boundary changes leading to a net stabilizing buoyancy flux give a very different response, causing the convection to quickly form a shallow circulation cell, followed eventually by a return to full-depth overturning through a combination of penetrative convection and conduction. The time scale again varies by orders of magnitude, depending on the boundary conditions and the location of the imposed boundary perturbation.
Three-dimensional direct numerical simulation of horizontal convection is reported for a large Rayleigh number, $\mathit{Ra}\sim O(1{0}^{12} )$, and boundary conditions that allow comparison with previous laboratory experiments. The convection is forced by heating over half of the horizontal base of a long channel and cooling over the other half of the base. The solutions are consistent with the experiments, including small-scale streamwise roll instability developing into a convectively mixed layer within the bottom thermal boundary layer, and a turbulent endwall plume. The mechanical energy budget is shown to be dominated by conversions of available potential energy to kinetic energy by buoyancy flux in the plume and the reverse in the interior of the circulation. These local conversions are three orders of magnitude greater than the total rate of viscous dissipation. The total irreversible mixing is exactly equal to the generation of available potential energy by buoyancy forcing, and one order of magnitude larger than the viscous dissipation. This confirms that dissipation rate is not an indicator of the strength of the circulation and explains why horizontal convection is more energetic than might be expected.