We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Central-line–associated bloodstream infection (CLABSI) surveillance in home infusion therapy is necessary to track efforts to reduce infections, but a standardized, validated, and feasible definition is lacking. We tested the validity of a home-infusion CLABSI surveillance definition and the feasibility and acceptability of its implementation.
Design:
Mixed-methods study including validation of CLABSI cases and semistructured interviews with staff applying these approaches.
Setting:
This study was conducted in 5 large home-infusion agencies in a CLABSI prevention collaborative across 14 states and the District of Columbia.
From May 2021 to May 2022, agencies implemented a home-infusion CLABSI surveillance definition, using 3 approaches to secondary bloodstream infections (BSIs): National Healthcare Safety Program (NHSN) criteria, modified NHSN criteria (only applying the 4 most common NHSN-defined secondary BSIs), and all home-infusion–onset bacteremia (HiOB). Data on all positive blood cultures were sent to an infection preventionist for validation. Surveillance staff underwent semistructured interviews focused on their perceptions of the definition 1 and 3–4 months after implementation.
Results:
Interrater reliability scores overall ranged from κ = 0.65 for the modified NHSN criteria to κ = 0.68 for the NHSN criteria to κ = 0.72 for the HiOB criteria. For the NHSN criteria, the agency-determined rate was 0.21 per 1,000 central-line (CL) days, and the validator-determined rate was 0.20 per 1,000 CL days. Overall, implementing a standardized definition was thought to be a positive change that would be generalizable and feasible though time-consuming and labor intensive.
Conclusions:
The home-infusion CLABSI surveillance definition was valid and feasible to implement.
Access to patient information may affect how home-infusion surveillance staff identify central-line–associated bloodstream infections (CLABSIs). We characterized information hazards in home-infusion CLABSI surveillance and identified possible strategies to mitigate information hazards.
Design:
Qualitative study using semistructured interviews.
Setting and participants:
The study included 21 clinical staff members involved in CLABSI surveillance at 5 large home-infusion agencies covering 13 states and the District of Columbia. Methods: Interviews were conducted by 1 researcher. Transcripts were coded by 2 researchers; consensus was reached by discussion.
Results:
Data revealed the following barriers: information overload, information underload, information scatter, information conflict, and erroneous information. Respondents identified 5 strategies to mitigate information chaos: (1) engage information technology in developing reports; (2) develop streamlined processes for acquiring and sharing data among staff; (3) enable staff access to hospital electronic health records; (4) use a single, validated, home-infusion CLABSI surveillance definition; and (5) develop relationships between home-infusion surveillance staff and inpatient healthcare workers.
Conclusions:
Information chaos occurs in home-infusion CLABSI surveillance and may affect the development of accurate CLABSI rates in home-infusion therapy. Implementing strategies to minimize information chaos will enhance intra- and interteam collaborations in addition to improving patient-related outcomes.
Healthcare workers (HCWs) not adhering to physical distancing recommendations is a risk factor for acquisition of severe acute respiratory coronavirus virus 2 (SARS-CoV-2). The study objective was to assess the impact of interventions to improve HCW physical distancing on actual distance between HCWs in a real-life setting.
Methods:
HCWs voluntarily wore proximity beacons to measure the number and intensity of physical distancing interactions between each other in a pediatric intensive care unit. We compared interactions before and after implementing a bundle of interventions including changes to the layout of workstations, cognitive aids, and individual feedback from wearable proximity beacons.
Results:
Overall, we recorded 10,788 interactions within 6 feet (∼2 m) and lasting >5 seconds. The number of HCWs wearing beacons fluctuated daily and increased over the study period. On average, 13 beacons were worn daily (32% of possible staff; range, 2–32 per day). We recorded 3,218 interactions before the interventions and 7,570 interactions after the interventions began. Using regression analysis accounting for the maximum number of potential interactions if all staff had worn beacons on a given day, there was a 1% decline in the number of interactions per possible interactions in the postintervention period (incident rate ratio, 0.99; 95% confidence interval, 0.98–1.00; P = .02) with fewer interactions occurring at nursing stations, in workrooms and during morning rounds.
Conclusions:
Using quantitative data from wearable proximity beacons, we found an overall small decline in interactions within 6 feet between HCWs in a busy intensive care unit after a multifaceted bundle of interventions was implemented to improve physical distancing.
Physical distancing among healthcare workers (HCWs) is an essential strategy in preventing HCW-to-HCWs transmission of severe acute respiratory coronavirus virus 2 (SARS-CoV-2).
Objective:
To understand barriers to physical distancing among HCWs on an inpatient unit and identify strategies for improvement.
Design:
Qualitative study including observations and semistructured interviews conducted over 3 months.
Setting:
A non–COVID-19 adult general medical unit in an academic tertiary-care hospital.
Participants:
HCWs based on the unit.
Methods:
We performed a qualitative study in which we (1) observed HCW activities and proximity to each other on the unit during weekday shifts July–October 2020 and (2) conducted semi-structured interviews of HCWs to understand their experiences with and perspectives of physical distancing in the hospital. Qualitative data were coded based on a human-factors engineering model.
Results:
We completed 25 hours of observations and 20 HCW interviews. High-risk interactions often occurred during handoffs of care at shift changes and patient rounds, when HCWs gathered regularly in close proximity for at least 15 minutes. Identified barriers included spacing and availability of computers, the need to communicate confidential patient information, and the desire to maintain relationships at work.
Conclusions:
Physical distancing can be improved in hospitals by restructuring computer workstations, work rooms, and break rooms; applying visible cognitive aids; adapting shift times; and supporting rounds and meetings with virtual conferencing. Additional strategies to promote staff adherence to physical distancing include rewarding positive behaviors, having peer leaders model physical distancing, and encouraging additional safe avenues for social connection at a safe distance.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.