We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The demand for separating and analysing rare target cells is increasing dramatically for vital applications such as cancer treatment and cell-based therapies. However, there remains a grand challenge for high-throughput and label-free segregation of lesion cells with similar sizes. Cancer cells with different invasiveness usually manifest distinct deformability. In this work, we employ a hydrogel microparticle system with similar sizes but varied stiffness to mimic cancer cells and examine in situ their deformation and focusing under microfluidic flow. We first demonstrate the similar focusing behaviour of hydrogel microparticles and cancer cells in confined flow that is dominated by deformability-induced lateral migration. The deformation, orientation and focusing position of hydrogel microparticles in microfluidic flow under different Reynolds numbers are then systematically observed and measured using a high-speed camera. Linear correlations of the Taylor deformation and tilt angle of hydrogel microparticles with the capillary number are revealed, consistent with theoretical predictions. Detailed analysis of the dependence of particle focusing on the flow rate and particle stiffness enables us to identify a linear scaling between the equilibrium focusing position and the major axis of the deformed microparticles, which is uniquely determined by the capillary number. Our findings provide insights into the focusing and dynamics of soft beads, such as cells and hydrogel microparticles, under confined flow, and pave the way for applications including the separation and identification of circulating tumour cells, drug delivery and controlled drug release.
Laser-driven inertial confinement fusion (ICF) diagnostics play a crucial role in understanding the complex physical processes governing ICF and enabling ignition. During the ICF process, the interaction between the high-power laser and ablation material leads to the formation of a plasma critical surface, which reflects a significant portion of the driving laser, reducing the efficiency of laser energy conversion into implosive kinetic energy. Effective diagnostic methods for the critical surface remain elusive. In this work, we propose a novel optical diagnostic approach to investigate the plasma critical surface. This method has been experimentally validated, providing new insights into the critical surface morphology and dynamics. This advancement represents a significant step forward in ICF diagnostic capabilities, with the potential to inform strategies for enhancing the uniformity of the driving laser and target surface, ultimately improving the efficiency of converting laser energy into implosion kinetic energy and enabling ignition.
Xiaonanshan is an archaeological site dated to 16.5–13.5 cal kyr BP, situated beside the Ussuri River in China. The lithic assemblages feature microblade debitage, bifacial points and stone adzes, which provide important new materials for this project to explore Neolithisation in the Amur River basin of northeast Asia.
The Lochkovian (Lower Devonian) conodont biostratigraphy in China is poorly known, and conodont-based subdivision schemes for the Lochkovian in peri-Gondwana (the Spanish Central Pyrenees, the Prague Synform, Sardinia, and the Carnic Alps) have not been tested in China. Therefore, we studied conodonts from the lower part (Bed 9 to Bed 13) of the Shanjiang Formation at the Alengchu section of Lijiang, western Yunnan to test the application of established subdivision schemes. The conodont fauna is assignable to 12 taxa belonging to eight genera (Ancyrodelloides, Flajsella, Lanea, Wurmiella, Zieglerodina, Caudicriodus, Pelekysgnathus, and Pseudooneotodus), and enables recognition of two chronostratigraphical intervals from the lower part of the Shanjiang Formation. The interval ranging from the uppermost part of Bed 9 to the upper part of Bed 10 belongs to the lower Lochkovian; whereas an interval covering the uppermost part of Bed 11 to the upper part of Bed 13 is correlated with the upper half of the middle Lochkovian. The Silurian-Devonian boundary is probably located within Bed 9, in the basal part of the Shanjiang Formation. However, the scarcity of specimens precludes definitive identification of bases of the lower, middle, and upper Lochkovian as well as other conodont zones recognized in peri-Gondwana.
Understanding factors associated with post-discharge sleep quality among COVID-19 survivors is important for intervention development.
Aims
This study investigated sleep quality and its correlates among COVID-19 patients 6 months after their most recent hospital discharge.
Method
Healthcare providers at hospitals located in five different Chinese cities contacted adult COVID-19 patients discharged between 1 February and 30 March 2020. A total of 199 eligible patients provided verbal informed consent and completed the interview. Using score on the single-item Sleep Quality Scale as the dependent variable, multiple linear regression models were fitted.
Results
Among all participants, 10.1% reported terrible or poor sleep quality, and 26.6% reported fair sleep quality, 26.1% reported worse sleep quality when comparing their current status with the time before COVID-19, and 33.7% were bothered by a sleeping disorder in the past 2 weeks. After adjusting for significant background characteristics, factors associated with sleep quality included witnessing the suffering (adjusted B = −1.15, 95% CI = −1.70, −0.33) or death (adjusted B = −1.55, 95% CI = −2.62, −0.49) of other COVID-19 patients during hospital stay, depressive symptoms (adjusted B = −0.26, 95% CI = −0.31, −0.20), anxiety symptoms (adjusted B = −0.25, 95% CI = −0.33, −0.17), post-traumatic stress disorders (adjusted B = −0.16, 95% CI = −0.22, −0.10) and social support (adjusted B = 0.07, 95% CI = 0.04, 0.10).
Conclusions
COVID-19 survivors reported poor sleep quality. Interventions and support services to improve sleep quality should be provided to COVID-19 survivors during their hospital stay and after hospital discharge.
Environmental hypoxia exposure causes fertility problems in human and animals. Compelling evidence suggests that chronic hypoxia impairs spermatogenesis and reduces sperm motility. However, it is unclear whether paternal hypoxic exposure affects fertilization and early embryo development. In the present study, we exposed male mice to high altitude (3200 m above sea level) for 7 or 60 days to evaluate the effects of hypoxia on sperm quality, zygotic DNA methylation and blastocyst formation. Compared with age-matched controls, hypoxia-treated males exhibited reduced fertility after mating with normoxic females as a result of defects in sperm motility and function. Results of in vitro fertilization (IVF) experiments revealed that 60 days’ exposure significantly reduced cleavage and blastocyst rates by 30% and 70%, respectively. Immunohistochemical staining of pronuclear formation indicated that the pronuclear formation process was disturbed and expression of imprinted genes was reduced in early embryos after paternal hypoxia. Overall, the findings of this study suggested that exposing male mice to hypoxia impaired sperm function and affected key events during early embryo development in mammals.
Nowadays, automated essay evaluation (AEE) systems play an important role in evaluating essays and have been successfully used in large-scale writing assessments. However, existing AEE systems mostly focus on grammar or shallow content measurements rather than higher-order traits such as ideas. This paper proposes a new formulation of graph-based features for concept maps using word embeddings to evaluate the quality of ideas for Chinese compositions. The concept map derived from the student’s composition is composed of the concepts appearing in the essay and the co-occurrence relationship between the concepts. By utilizing real compositions written by eighth-grade students from a large-scale assessment, the scoring accuracy of the computer evaluation system (named AECC-I: Automated Evaluation for Chinese Compositions—Ideas) is higher than the baselines. The results indicate that the proposed method deepens the construct-relevant coverage of automatic ideas evaluation in compositions and that it can provide constructive feedback for students.
A multicenter study of sharps injuries (SIs) and other blood or body fluid (OBBF) exposures was conducted among 33,156 healthcare workers (HCWs) from 175 hospitals in Anhui, China. In total, 12,178 HCWs (36.7%) had experienced at least 1 SI in the previous 12 months and 8,116 HCWs (24.5%) had experienced at least 1 OBBF exposure during the previous 12 months.
To explore whether different polyvinylpyrrolidone (PVP) concentrations affect the results of intracytoplasmic sperm injection (ICSI), a prospective study was conducted for 194 couples undergoing 210 ICSI therapy cycles. These cycles were divided into three groups (10, 7 and 5% groups) using the corresponding concentration of PVP for sperm immobilization. The main outcome measures were analyzed. Results indicated that, with a decrease in PVP concentrations, all of the main outcome measures increased. In particular, the high-quality cleavage embryo rate in the 7% group was significantly lower than in the 5% group (P < 0.01), and the cleavage, high-quality cleavage embryo, and high-quality blastocyst rates in the 5% group were significantly higher than those in the 10% group (all P < 0.001). For high-/intermediate-quality semen, all of the main outcome measures were significantly increased with 5% PVP. For the poor-quality semen, only the high-quality cleavage embryo and high-quality blastocyst rates were significantly higher in the 5% group. Therefore, lowering PVP concentrations greatly promoted the development of embryos in ICSI cycles, with an optimal concentration of 5% for ICSI.
A detailed electron backscatter diffraction (EBSD) characterization was utilized to investigate abnormal grain growth behavior of nanocrystalline (NC) Au films constrained by a flexible substrate under cyclic loading. Abnormally grown grains (AGGs) in front of about 15 fatigue cracks were picked out to investigate the grain reorientation behavior during abnormal grain growth in the fatigue crack tip in the cyclically deformed thin films. It shows that the AGGs exhibited 〈001〉 orientation along the loading direction, whereas grains grown far away from fatigue cracks had no significant texture change. The cyclic cumulative shear strain was found to play a key role in grain reorientation. A lattice rotation model was proposed to elucidate the grain reorientation mechanism during abnormal grain growth. Such grain reorientation behavior of NC metals was found to provide an intrinsic resistance of the NC metals to fatigue damage.
Iron sulfides have attracted much interests for their potential as anode materials in energy storage devices in view of their low costs, and environmentally benign and high theoretical capacities. Among them, Fe1−xS is relatively rarely investigated. In this work, Fe1−xS@rGO has been synthesized using a facile in situ hydrothermal method. After wrapped by rGO, the morphology of Fe1−xS particles changes from hexagonal flakes to irregular particles with much smaller sizes. As the anode material for lithium ion batteries, Fe1−xS@rGO exhibits excellent lithium storage ability. It can deliver an initial discharge capacity of 1575.5 mA h/g in the potential window of 0.005–3 V, and a reversible capacity of 907.8 mA h/g can be maintained after 200 cycles at 100 mA/g. Its improved electrochemical performance can be attributed to the effect of enhanced contact area and shortened Li+ ion transport distance because of rGO’s contribution.
To explore whether and how group cognitive-behavioural therapy (GCBT) plus medication differs from medication alone for the treatment of generalised anxiety disorder (GAD).
Methods:
Hundred and seventy patients were randomly assigned to the GCBT plus duloxetine (n=89) or duloxetine group (n=81). The primary outcomes were Hamilton Anxiety Scale (HAMA) response and remission rates. The explorative secondary measures included score reductions from baseline in the HAMA total, psychic, and somatic anxiety subscales (HAMA-PA, HAMA-SA), the Hamilton Depression Scale, the Severity Subscale of Clinical Global Impression Scale, Global Assessment of Functioning, and the 12-item Short-Form Health Survey. Assessments were conducted at baseline, 4-week, 8-week, and 3-month follow-up.
Results:
At 4 weeks, HAMA response (GCBT group 57.0% vs. control group 24.4%, p=0.000, Cohen’s d=0.90) and remission rates (GCBT group 21.5% vs. control group 6.2%, p=0.004; d=0.51), and most secondary outcomes (all p<0.05, d=0.36−0.77) showed that the combined therapy was superior. At 8 weeks, all the primary and secondary significant differences found at 4 weeks were maintained with smaller effect sizes (p<0.05, d=0.32−0.48). At 3-month follow-up, the combined therapy was only significantly superior in the HAMA total (p<0.045, d=0.43) and HAMA-PA score reductions (p<0.001, d=0.77). Logistic regression showed superiority of the combined therapy for HAMA response rates [odds ratio (OR)=2.12, 95% confidence interval (CI) 1.02−4.42, p=0.04] and remission rates (OR=2.80, 95% CI 1.27−6.16, p=0.01).
Conclusions:
Compared with duloxetine alone, GCBT plus duloxetine showed significant treatment response for GAD over a shorter period of time, particularly for psychic anxiety symptoms, which may suggest that GCBT was effective in changing cognitive style.
In order to reveal the quantitative relationship between fatigue crack deflection path and cross-sectional grain boundary (GB) arrangement of metallic nanolayered composites (NLCs), a stochastic model was established based on the interface-dominant fatigue damage for the ultrafine-scale NLCs. The model indicates that the crack deflection length decreases with decreasing GB arrangement deviation and grain size of constituent layers. The observation and quantitative analysis of fatigue cracking behavior of the Cu/W multilayers with a layer thickness of 5 and 20 nm was conducted to verify the model.
Paediatric Mycoplasma pneumoniae pneumonia (MPP) is a major cause of community-acquired pneumonia in China. Data on epidemiology of paediatric MPP from China are little known. This study retrospectively collected data from June 2006 to June 2016 in Beijing Children's Hospital, Capital Medical University of North China and aims to explore the epidemiological features of paediatric MPP and severe MPP (SMPP) in North China during the past 10 years. A total of 27 498 paediatric patients with pneumonia were enrolled. Among them, 37.5% of paediatric patients had MPP. In this area, an epidemic took place every 2–3 years at the peak, and the positive rate of MPP increased during these peak years over time. The peak age of MPP was between the ages of 6 and 10 years, accounting for 75.2%, significantly more compared with other age groups (χ2 = 1384.1, P < 0.0001). The epidemics peaked in September, October and November (χ2 = 904.9, P < 0.0001). Additionally, 13.0% of MPP paediatric patients were SMPP, but over time, the rate of SMPP increased, reaching 42.6% in 2016. The mean age of paediatric patients with SMPP (6.7 ± 3.0 years old) was younger than that of patients with non-SMPP (7.4 ± 3.2 years old) (t = 3.60, P = 0.0001). The prevalence of MPP and SMPP is common in China, especially in children from 6 to 10 years old. Paediatric patients with SMPP tend to be younger than those with non-SMPP. MPP outbreaks occur every 2–3 years in North China. September, October and November are the peak months, unlike in South China. Understanding the epidemiological characteristics of paediatric MPP can contribute to timely treatment and diagnosis, and may improve the prognosis of children with SMPP.
Fatigue performance of metallic nanolayered composites (NLCs) has been gaining more and more attention due to the rapid development in the field of both micro-electro-mechanical systems and high-performance engineering structure materials and the increasing demand for long-term fatigue reliability. Metallic NLCs have exhibited different damage behaviors due to the effect of high-density heterogeneous interface compared with bulk materials and thin metal films. In this review paper, the cyclic deformation damage behavior, fatigue cracking feature, and fatigue properties of some metallic NLCs are reviewed. Effects of length scales, including layer thickness and grain size, on fatigue damage behaviors of the NLCs are revealed, and the transition of the fatigue cracking behavior and the corresponding damage mechanism are discussed. Then, the fatigue properties of some typical metallic NLCs are presented and compared with that of bulk materials and metal thin films. The effect of interface type and grain boundary alignment is also discussed to correlate with fatigue cracking resistance of the NLCs. Finally, some prospective research topics on fatigue performance of metallic NLCs are addressed.
Fatigue properties of Mo/W multilayers with individual layer thickness (λ) of 5, 20, 50 and 100 nm on flexible polyimide substrates were investigated. The experimental results show that the fatigue resistance increases with decreasing λ from 100 nm to 20 nm, and reaches the maximum at λ=20 nm, and then decreases when further decreasing λ. Fatigue cracks of Mo/W multilayers with different λ were found to propagate along columnar grain boundary in the out-of-plane direction and along the boundary of cluster structures. The enhanced fatigue resistance is attributed to the larger cluster inclination angles and the more tortuous in-plane cracking paths.
The clay mineralogy and chemical composition of the white veins, red matrix and both Fe- and Mn-bearing nodules occurring in a laterite profile in Hubei, south China were investigated using X-ray diffraction, scanning electron microscopy equipped with an energy-dispersive spectrometer, and high-resolution transmission electron microscopy. The results show that the mineral components of the red matrix are mainly quartz, kaolinite, halloysite, goethite and minor illite, whereas the white net-like veins contain mostly quartz, kaolinite, halloysite, and illite. In the net-like horizon, the chemical index of alteration (CIA, the ratio of Al2O3/(Al2O3+CaO+K2O+Na2O)) and the TiO2/Al2O3 ratio are 89.8% and 0.021 for the white vein and 90.7% and 0.025 for the red matrix, respectively. Both white-vein and red-matrix components have similar TiO2/Al2O3 ratios, and are similar to the ratio 0.027 of the unaltered bedrock. The similarity in TiO2/Al2O3 values indicates that all three portions of the laterite soil share the same origin. Also, although the white-vein and red-matrix components differ in Fe2O3 abundance, the similar CIA values do imply similar degrees of alteration. The Fe-bearing and Mn-bearing nodules were produced by the local accumulation of Fe2O3 and MnO, respectively. Halloysite in the weathering profile occurs in two different morphologies, tubular and platy crystals. Tubular halloysite occurs both in the red matrix and the Fe-bearing nodule whereas platy halloysite occurs only in the white vein and Mn-bearing nodule assemblages. Crystallization of small tubular halloysite from Si and Al concretions in the red matrix is observed, indicating that the morphology of these crystals in the weathering environment is mainly controlled by Fe3+ cations, whereas platy halloysite may be derived from the hydration of kaolinite.